python 数据可视化利器

栏目: Python · 发布时间: 6年前

内容简介:前段时间有读者向我反映,想看看数据可视化方面的文章,这不?现在就开始写了,如果你想看哪些方面的文章,可以通过留言或者后台告诉我。数据可视化的第三方库挺多的,这里我主要推荐两个,分别是 bokeh、pyecharts。这里展示一下常用的图表和比较抢眼的图表,详细的文档可查看(这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。

前段时间有读者向我反映,想看看数据可视化方面的文章,这不?现在就开始写了,如果你想看哪些方面的文章,可以通过留言或者后台告诉我。数据可视化的第三方库挺多的,这里我主要推荐两个,分别是 bokeh、pyecharts。 如果我的文章对你有帮助,欢迎关注、点赞、转发,这样我会更有动力做原创分享。

bokeh

这里展示一下常用的图表和比较抢眼的图表,详细的文档可查看( bokeh.pydata.org/en/latest/d…

条形图

这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。

python 数据可视化利器
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
from bokeh.plotting import figure
output_file("colormapped_bars.html")#  配置输出文件名
fruits = ['Apples', '魅族', 'OPPO', 'VIVO', '小米', '华为'] # 数据
counts = [5, 3, 4, 2, 4, 6] # 数据
source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))
p = figure(x_range=fruits, y_range=(0,9), plot_height=250, title="Fruit Counts",
           toolbar_location=None, tools="")# 条形图配置项
p.vbar(x='fruits', top='counts', width=0.9, color='color', legend="fruits", source=source)
p.xgrid.grid_line_color = None # 配置网格线颜色
p.legend.orientation = "horizontal" # 图表方向为水平方向
p.legend.location = "top_center"
show(p) # 展示图表
复制代码

年度条形图

可以对比不同时间点的量。

python 数据可视化利器
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure
output_file("bars.html")
fruits = ['Apples', '魅族', 'OPPO', 'VIVO', '小米', '华为']
years = ['2015', '2016', '2017']
data = {'fruits': fruits,
        '2015': [2, 1, 4, 3, 2, 4],
        '2016': [5, 3, 3, 2, 4, 6],
        '2017': [3, 2, 4, 4, 5, 3]}
x = [(fruit, year) for fruit in fruits for year in years]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ())  
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title="Fruit Counts by Year",
           toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source)
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)
复制代码

饼图

python 数据可视化利器
from collections import Counter
from math import pi
import pandas as pd
from bokeh.io import output_file, show
from bokeh.palettes import Category20c
from bokeh.plotting import figure
from bokeh.transform import cumsum
output_file("pie.html")
x = Counter({
    '中国': 157,
    '美国': 93,
    '日本': 89,
    '巴西': 63,
    '德国': 44,
    '印度': 42,
    '意大利': 40,
    '澳大利亚': 35,
    '法国': 31,
    '西班牙': 29
})
data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(index=str, columns={0:'value', 'index':'country'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = Category20c[len(x)]
p = figure(plot_height=350, title="Pie Chart", toolbar_location=None,
           tools="hover", tooltips="@country: @value")
p.wedge(x=0, y=1, radius=0.4,
        start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
        line_color="white", fill_color='color', legend='country', source=data)
p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None
show(p)                                                                                                          
复制代码

条形图

python 数据可视化利器
from bokeh.io import output_file, show
from bokeh.models import ColumnDataSource
from bokeh.palettes import GnBu3, OrRd3
from bokeh.plotting import figure
output_file("stacked_split.html")
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ["2015", "2016", "2017"]
exports = {'fruits': fruits,
           '2015': [2, 1, 4, 3, 2, 4],
           '2016': [5, 3, 4, 2, 4, 6],
           '2017': [3, 2, 4, 4, 5, 3]}
imports = {'fruits': fruits,
           '2015': [-1, 0, -1, -3, -2, -1],
           '2016': [-2, -1, -3, -1, -2, -2],
           '2017': [-1, -2, -1, 0, -2, -2]}
p = figure(y_range=fruits, plot_height=250, x_range=(-16, 16), title="Fruit import/export, by year",
           toolbar_location=None)
p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports),
             legend=["%s exports" % x for x in years])
p.hbar_stack(years, y='fruits', height=0.9, color=OrRd3, source=ColumnDataSource(imports),
             legend=["%s imports" % x for x in years])
p.y_range.range_padding = 0.1
p.ygrid.grid_line_color = None
p.legend.location = "top_left"
p.axis.minor_tick_line_color = None
p.outline_line_color = None
show(p)
复制代码

散点图

python 数据可视化利器
from bokeh.plotting import figure, output_file, show
output_file("line.html")
p = figure(plot_width=400, plot_height=400)
p.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
show(p)
复制代码

六边形图

这两天,马蜂窝刚被发现数据造假,这不,与马蜂窝应应景。

python 数据可视化利器
import numpy as np
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.util.hex import axial_to_cartesian
output_file("hex_coords.html")
q = np.array([0, 0, 0, -1, -1, 1, 1])
r = np.array([0, -1, 1, 0, 1, -1, 0])
p = figure(plot_width=400, plot_height=400, toolbar_location=None) # 
p.grid.visible = False # 配置网格是否可见
p.hex_tile(q, r, size=1, fill_color=["firebrick"] * 3 + ["navy"] * 4,
           line_color="white", alpha=0.5)
x, y = axial_to_cartesian(q, r, 1, "pointytop")
p.text(x, y, text=["(%d, %d)" % (q, r) for (q, r) in zip(q, r)],
       text_baseline="middle", text_align="center")
show(p)
复制代码

环比条形图

这个实现挺厉害的,看了一眼就吸引了我。我在代码中都做了一些注释,希望对你理解有帮助。注:圆心为正中央,即直角坐标系中标签为(0,0)的地方。

python 数据可视化利器
from collections import OrderedDict
from math import log, sqrt
import numpy as np
import pandas as pd
from six.moves import cStringIO as StringIO
from bokeh.plotting import figure, show, output_file

antibiotics = """
bacteria,                        penicillin, streptomycin, neomycin, gram
结核分枝杆菌,                      800,        5,            2,        negative
沙门氏菌,                         10,         0.8,          0.09,     negative
变形杆菌,                         3,          0.1,          0.1,      negative
肺炎克雷伯氏菌,                    850,        1.2,          1,        negative
布鲁氏菌,                         1,          2,            0.02,     negative
铜绿假单胞菌,                     850,        2,            0.4,      negative
大肠杆菌,                        100,        0.4,          0.1,      negative
产气杆菌,                         870,        1,            1.6,      negative
白色葡萄球菌,                     0.007,      0.1,          0.001,    positive
溶血性链球菌,                     0.001,      14,           10,       positive
草绿色链球菌,                     0.005,      10,           40,       positive
肺炎双球菌,                       0.005,      11,           10,       positive
"""

drug_color = OrderedDict([# 配置中间标签名称与颜色
    ("盘尼西林", "#0d3362"),
    ("链霉素", "#c64737"),
    ("新霉素", "black"),
])
gram_color = {
    "positive": "#aeaeb8",
    "negative": "#e69584",
}
# 读取数据
df = pd.read_csv(StringIO(antibiotics),
                 skiprows=1,
                 skipinitialspace=True,
                 engine='python')
width = 800
height = 800
inner_radius = 90
outer_radius = 300 - 10

minr = sqrt(log(.001 * 1E4))
maxr = sqrt(log(1000 * 1E4))
a = (outer_radius - inner_radius) / (minr - maxr)
b = inner_radius - a * maxr


def rad(mic):
    return a * np.sqrt(np.log(mic * 1E4)) + b
big_angle = 2.0 * np.pi / (len(df) + 1)
small_angle = big_angle / 7
# 整体配置
p = figure(plot_width=width, plot_height=height, title="",
           x_axis_type=None, y_axis_type=None,
           x_range=(-420, 420), y_range=(-420, 420),
           min_border=0, outline_line_color="black",
           background_fill_color="#f0e1d2")
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# annular wedges
angles = np.pi / 2 - big_angle / 2 - df.index.to_series() * big_angle  #计算角度
colors = [gram_color[gram] for gram in df.gram] # 配置颜色
p.annular_wedge(
    0, 0, inner_radius, outer_radius, -big_angle + angles, angles, color=colors,
)

# small wedges
p.annular_wedge(0, 0, inner_radius, rad(df.penicillin),
                -big_angle + angles + 5 * small_angle, -big_angle + angles + 6 * small_angle,
                color=drug_color['盘尼西林'])
p.annular_wedge(0, 0, inner_radius, rad(df.streptomycin),
                -big_angle + angles + 3 * small_angle, -big_angle + angles + 4 * small_angle,
                color=drug_color['链霉素'])
p.annular_wedge(0, 0, inner_radius, rad(df.neomycin),
                -big_angle + angles + 1 * small_angle, -big_angle + angles + 2 * small_angle,
                color=drug_color['新霉素'])
# 绘制大圆和标签
labels = np.power(10.0, np.arange(-3, 4))
radii = a * np.sqrt(np.log(labels * 1E4)) + b
p.circle(0, 0, radius=radii, fill_color=None, line_color="white")
p.text(0, radii[:-1], [str(r) for r in labels[:-1]],
       text_font_size="8pt", text_align="center", text_baseline="middle")
# 半径
p.annular_wedge(0, 0, inner_radius - 10, outer_radius + 10,
                -big_angle + angles, -big_angle + angles, color="black")
# 细菌标签
xr = radii[0] * np.cos(np.array(-big_angle / 2 + angles))
yr = radii[0] * np.sin(np.array(-big_angle / 2 + angles))
label_angle = np.array(-big_angle / 2 + angles)
label_angle[label_angle < -np.pi / 2] += np.pi  # easier to read labels on the left side
# 绘制各个细菌的名字
p.text(xr, yr, df.bacteria, angle=label_angle,
       text_font_size="9pt", text_align="center", text_baseline="middle")
# 绘制圆形,其中数字分别为 x 轴与 y 轴标签
p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5)
# 绘制文字
p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()],
       text_font_size="7pt", text_align="left", text_baseline="middle")
# 绘制矩形,中间标签部分。其中 -40,-40,-40 为三个矩形的 x 轴坐标。18,0,-18 为三个矩形的 y 轴坐标
p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13,
       color=list(drug_color.values()))
# 配置中间标签文字、文字大小、文字对齐方式
p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color),
       text_font_size="9pt", text_align="left", text_baseline="middle")
output_file("burtin.html", title="burtin.py example")
show(p)
复制代码

元素周期表

元素周期表,这个实现好牛逼啊,距离初三刚开始学化学已经很遥远了,想当年我还是化学课代表呢!由于基本用不到化学了,这里就不实现了。

python 数据可视化利器
python 数据可视化利器

pyecharts

pyecharts 也是一个比较常用的数据可视化库,用得也是比较多的了,是百度 echarts 库的 python 支持。这里也展示一下常用的图表。文档地址为( pyecharts.org/#/zh-cn/pre…

条形图

python 数据可视化利器
from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render()    # 生成本地 HTML 文件
复制代码

散点图

python 数据可视化利器
from pyecharts import Polar
import random
data_1 = [(10, random.randint(1, 100)) for i in range(300)]
data_2 = [(11, random.randint(1, 100)) for i in range(300)]
polar = Polar("极坐标系-散点图示例", width=1200, height=600)
polar.add("", data_1, type='scatter')
polar.add("", data_2, type='scatter')
polar.render()
复制代码

饼图

python 数据可视化利器
import random
from pyecharts import Pie
attr = ['A', 'B', 'C', 'D', 'E', 'F']
pie = Pie("饼图示例", width=1000, height=600)
pie.add(
    "",
    attr,
    [random.randint(0, 100) for _ in range(6)],
    radius=[50, 55],
    center=[25, 50],
    is_random=True,
)
pie.add(
    "",
    attr,
    [random.randint(20, 100) for _ in range(6)],
    radius=[0, 45],
    center=[25, 50],
    rosetype="area",
)
pie.add(
    "",
    attr,
    [random.randint(0, 100) for _ in range(6)],
    radius=[50, 55],
    center=[65, 50],
    is_random=True,
)
pie.add(
    "",
    attr,
    [random.randint(20, 100) for _ in range(6)],
    radius=[0, 45],
    center=[65, 50],
    rosetype="radius",
)
pie.render()
复制代码

词云

这个是我在前面的文章中用到的图片实例,这里就不 po 具体数据了。

python 数据可视化利器
from pyecharts import WordCloud
name = ['Sam S Club'] # 词条
value = [10000] # 权重
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.render()
复制代码

树图

这个是我在前面的文章中用到的图片实例,这里就不 po 具体数据了。

python 数据可视化利器

地图

python 数据可视化利器
from pyecharts import Map

value = [155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr = [
    "福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"
    ]
map = Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add(
    "",
    attr,
    value,
    maptype="china",
    is_visualmap=True,
    visual_text_color="#000",
)
map.render()
复制代码

3D 散点图

python 数据可视化利器
from pyecharts import Scatter3D
import random
data = [
    [random.randint(0, 100),
    random.randint(0, 100),
    random.randint(0, 100)] for _ in range(80)
]
range_color = [
    '#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
    '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
scatter3D = Scatter3D("3D 散点图示例", width=1200, height=600)
scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color)
scatter3D.render()
复制代码

后记

大概介绍就是这样了,两个库的功能都挺强大的,bokeh 的中文资料会少一点,如果阅读英文有点难度,还是建议使用 pyecharts 就好。总体也不是很难,按照文档来修改数据都能够直接上手使用。主要是多练习。

本文首发于公众号【zone7】,关注获取最新推文。

python 数据可视化利器

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

精通Python设计模式

精通Python设计模式

[荷] Sakis Kasampalis / 夏永锋 / 人民邮电出版社 / 2016-7 / 45.00元

本书分三部分、共16章介绍一些常用的设计模式。第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。一起来看看 《精通Python设计模式》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具