内容简介:问题描述最近在使用一个内部的RPC框架时,发现如果使用Object类型,实际类型为BigDecimal的时候,作为传输对象的时候,会出现丢失精度的问题;比如在序列化前为金额1.00,反序列化之后为1.0,本身值可能没有影响,但是在有些强依赖金额的地方,会出现问题;问题分析
问题描述
最近在使用一个内部的RPC框架时,发现如果使用Object类型,实际类型为BigDecimal的时候,作为传输对象的时候,会出现丢失精度的问题;比如在序列化前为金额1.00,反序列化之后为1.0,本身值可能没有影响,但是在有些强依赖金额的地方,会出现问题;
问题分析
查看源码发现RPC框架默认使用的序列化框架为Jackson,那简单,看一下本地是否可以重现问题;
1.准备数据传输bean
public class Bean1 { private String p1; private BigDecimal p2; ...省略get/set... } public class Bean2 { private String p1; private Object p2; ...省略get/set... }
为了更好的看出问题,分别准备了2个bean;
2.准备测试类
public class JKTest { public static void main(String[] args) throws IOException { ObjectMapper mapper = new ObjectMapper(); Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); String bs1 = mapper.writeValueAsString(bean1); String bs2 = mapper.writeValueAsString(bean2); System.out.println(bs1); System.out.println(bs2); Bean1 b1 = mapper.readValue(bs1, Bean1.class); System.out.println(b1.toString()); Bean2 b22 = mapper.readValue(bs2, Bean2.class); System.out.println(b22.toString()); } }
分别对Bean1和Bean2进行序列化和反序列化操作,然后查看结果;
3.显示结果
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.0]
4.结果分析
结果可以发现两个问题:
1.在序列化的时候2个bean都没有问题;
2.重现了问题,Bean2在反序列化时,p2出现了精度丢失的问题;
5.源码分析
通过一步一步查看Jackson源码,最终定位到UntypedObjectDeserializer的Vanilla内部类中,反序列方法如下:
public Object deserialize(JsonParser p, DeserializationContext ctxt) throws IOException { switch (p.getCurrentTokenId()) { case JsonTokenId.ID_START_OBJECT: { JsonToken t = p.nextToken(); if (t == JsonToken.END_OBJECT) { return new LinkedHashMap<String,Object>(2); } } case JsonTokenId.ID_FIELD_NAME: return mapObject(p, ctxt); case JsonTokenId.ID_START_ARRAY: { JsonToken t = p.nextToken(); if (t == JsonToken.END_ARRAY) { // and empty one too if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return NO_OBJECTS; } return new ArrayList<Object>(2); } } if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return mapArrayToArray(p, ctxt); } return mapArray(p, ctxt); case JsonTokenId.ID_EMBEDDED_OBJECT: return p.getEmbeddedObject(); case JsonTokenId.ID_STRING: return p.getText(); case JsonTokenId.ID_NUMBER_INT: if (ctxt.hasSomeOfFeatures(F_MASK_INT_COERCIONS)) { return _coerceIntegral(p, ctxt); } return p.getNumberValue(); // should be optimal, whatever it is case JsonTokenId.ID_NUMBER_FLOAT: if (ctxt.isEnabled(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS)) { return p.getDecimalValue(); } return p.getNumberValue(); case JsonTokenId.ID_TRUE: return Boolean.TRUE; case JsonTokenId.ID_FALSE: return Boolean.FALSE; case JsonTokenId.ID_END_OBJECT: // 28-Oct-2015, tatu: [databind#989] We may also be given END_OBJECT (similar to FIELD_NAME), // if caller has advanced to the first token of Object, but for empty Object return new LinkedHashMap<String,Object>(2); case JsonTokenId.ID_NULL: // 08-Nov-2016, tatu: yes, occurs return null; //case JsonTokenId.ID_END_ARRAY: // invalid default: } return ctxt.handleUnexpectedToken(Object.class, p); }
在Bean2中的p2是一个Object类型,所以Jackson中给定的反序列化类为UntypedObjectDeserializer,这个比较容易理解;然后根据具体的数据类型,调用不用的读取方法;因为json这种序列化方式,除了数据,本身并没有存放具体的数据类型,所有这里Jackson认定2.00为一个ID_NUMBER_FLOAT类型,在这个case下面有2个选择,默认是直接调用getNumberValue()方法,这种情况会丢失精度,返回结果为2.0;或者开启使用USE_BIG_DECIMAL_FOR_FLOATS特性,问题解决也很简单,使用此特性即可;
6.使用USE_BIG_DECIMAL_FOR_FLOATS特性
ObjectMapper mapper = new ObjectMapper(); mapper.enable(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS);
再次测试,可以发现结果如下:
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
7.反序列扩展
Jackson本身提供了对序列化和反序列扩展的功能,对应特殊的Bean可以自己定义反序列类,比如针对Bean2,可以实现Bean2Deserializer,然后在ObjectMapper进行注册
ObjectMapper mapper = new ObjectMapper(); SimpleModule desModule = new SimpleModule("testModule"); desModule.addDeserializer(Bean2.class, new Bean2Deserializer(Bean2.class)); mapper.registerModule(desModule);
扩展
Json本身并没有存放数据类型,只有数据本身,那应该类Json的序列化方式应该都存在此问题;
1.FastJson分析
准备测试代码如下:
public class FJTest { public static void main(String[] args) { Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); String jsonString1 = JSON.toJSONString(bean1); String jsonString2 = JSON.toJSONString(bean2); System.out.println(jsonString1); System.out.println(jsonString2); Bean1 bean11 = JSON.parseObject(jsonString1, Bean1.class); Bean2 bean22 = JSON.parseObject(jsonString2, Bean2.class); System.out.println(bean11.toString()); System.out.println(bean22.toString()); } }
结果如下:
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
可以发现FastJson并不存在此问题,查看源码,定位到DefaultJSONParser的parse方法,部分代码如下:
public Object parse(Object fieldName) { final JSONLexer lexer = this.lexer; switch (lexer.token()) { case SET: lexer.nextToken(); HashSet<Object> set = new HashSet<Object>(); parseArray(set, fieldName); return set; case TREE_SET: lexer.nextToken(); TreeSet<Object> treeSet = new TreeSet<Object>(); parseArray(treeSet, fieldName); return treeSet; case LBRACKET: JSONArray array = new JSONArray(); parseArray(array, fieldName); if (lexer.isEnabled(Feature.UseObjectArray)) { return array.toArray(); } return array; case LBRACE: JSONObject object = new JSONObject(lexer.isEnabled(Feature.OrderedField)); return parseObject(object, fieldName); case LITERAL_INT: Number intValue = lexer.integerValue(); lexer.nextToken(); return intValue; case LITERAL_FLOAT: Object value = lexer.decimalValue(lexer.isEnabled(Feature.UseBigDecimal)); lexer.nextToken(); return value; case LITERAL_STRING: String stringLiteral = lexer.stringVal(); lexer.nextToken(JSONToken.COMMA); if (lexer.isEnabled(Feature.AllowISO8601DateFormat)) { JSONScanner iso8601Lexer = new JSONScanner(stringLiteral); try { if (iso8601Lexer.scanISO8601DateIfMatch()) { return iso8601Lexer.getCalendar().getTime(); } } finally { iso8601Lexer.close(); } } return stringLiteral; case NULL: lexer.nextToken(); return null; case UNDEFINED: lexer.nextToken(); return null; case TRUE: lexer.nextToken(); return Boolean.TRUE; case FALSE: lexer.nextToken(); return Boolean.FALSE; ...省略... }
类似jackson的方式,根据不同的类型做不同的数据处理,同样2.00也被认为是float类型,同样需要检测是否开启Feature.UseBigDecimal特性,只不过FastJson默认开启了此功能;
2.Protostuff分析
下面再来看一个非Json类序列化方式,看protostuff是如果处理此种问题的;
准备测试代码如下:
@SuppressWarnings("unchecked") public class PBTest { public static void main(String[] args) { Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); LinkedBuffer buffer1 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); Schema schema1 = RuntimeSchema.createFrom(bean1.getClass()); byte[] bytes1 = ProtostuffIOUtil.toByteArray(bean1, schema1, buffer1); Bean1 bean11 = new Bean1(); ProtostuffIOUtil.mergeFrom(bytes1, bean11, schema1); System.out.println(bean11.toString()); LinkedBuffer buffer2 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); Schema schema2 = RuntimeSchema.createFrom(bean2.getClass()); byte[] bytes2 = ProtostuffIOUtil.toByteArray(bean2, schema2, buffer2); Bean2 bean22 = new Bean2(); ProtostuffIOUtil.mergeFrom(bytes2, bean22, schema2); System.out.println(bean22.toString()); } }
结果如下:
Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
可以发现Protostuff也不存在此问题,原因是因为Protostuff在序列化的时候就将类型等信息存放在二进制中,不同的类型给定了不同的标识,RuntimeFieldFactory列出了所有标识:
public abstract class RuntimeFieldFactory<V> implements Delegate<V> { static final int ID_BOOL = 1, ID_BYTE = 2, ID_CHAR = 3, ID_SHORT = 4, ID_INT32 = 5, ID_INT64 = 6, ID_FLOAT = 7, ID_DOUBLE = 8, ID_STRING = 9, ID_BYTES = 10, ID_BYTE_ARRAY = 11, ID_BIGDECIMAL = 12, ID_BIGINTEGER = 13, ID_DATE = 14, ID_ARRAY = 15, // 1-15 is encoded as 1 byte on protobuf and // protostuff format ID_OBJECT = 16, ID_ARRAY_MAPPED = 17, ID_CLASS = 18, ID_CLASS_MAPPED = 19, ID_CLASS_ARRAY = 20, ID_CLASS_ARRAY_MAPPED = 21, ID_ENUM_SET = 22, ID_ENUM_MAP = 23, ID_ENUM = 24, ID_COLLECTION = 25, ID_MAP = 26, ID_POLYMORPHIC_COLLECTION = 28, ID_POLYMORPHIC_MAP = 29, ID_DELEGATE = 30, ID_ARRAY_DELEGATE = 32, ID_ARRAY_SCALAR = 33, ID_ARRAY_ENUM = 34, ID_ARRAY_POJO = 35, ID_THROWABLE = 52, // pojo fields limited to 126 if not explicitly using @Tag // annotations ID_POJO = 127; ...... }
序列化的时候是已如下格式来存储数据的,如下图所示:
tag里面包含了字段的位置标识,比如第一个字段,第二个字段…,以及类型信息,可以看一下两个bean序列化之后的二进制信息:
104 97 104 97 49和104 97 104 97 50分别是:haha1和haha2;49 46 48 48和50 46 48 48分别是1.00和2.00;
Bean2存储的数据量明细比Bean1大,因为Bean2中的p2作为Object存储,需要存储Object的起始标识和结束标识,还需要保存具体的类型信息;
更多可以参考: https://my.oschina.net/OutOfMemory/blog/800226
总结
类Json序列化方式本身没有保存数据的类型,所以在反序列时有些类型不能区分,只能通过设置特性的方式来解决,但是json格式有更好的可读性;直接序列化为二进制的方式可读性差点,但是可以将很多信息保存进去,更加完善;
以上所述就是小编给大家介绍的《关于Jackson默认丢失Bigdecimal精度问题分析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 拯救你丢失的精度——BigInteger和BigDecimal类(入门)
- Java 浮点型(Double,Float)精度丢失解决方案
- JS大坑之19位数的Number型精度丢失问题
- Jison解决JS处理后端返回的Long型数据精度丢失问题
- swagger-bootstrap-ui 1.9.6 发布,解决长整型精度丢失的问题
- JS计算精度小记
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
极致:互联网时代的产品设计
戴维•罗斯 / 中信出版集团 / 2016-6 / 49.00元
在不远的未来,日常物品将能够迅速理解我们的需求,改善我们的生活,并随处可见。为了实现这一预期,我们需要能够发现用户使用产品的场景,找到用户高频刚需痛点的产品设计者。 站在下一个转型发展的悬崖上,我们看到技术将更具人性。随着物联网的发展,我们习以为常的数百件日常物品:汽车、钱包、手表、雨伞甚至垃圾桶,都将回应我们的需求,了解我们,学习为我们思考。最先出现的智能硬件为什么是智能手环、无人驾驶汽车......一起来看看 《极致:互联网时代的产品设计》 这本书的介绍吧!
Base64 编码/解码
Base64 编码/解码
MD5 加密
MD5 加密工具