做AI+癌症诊断,巨头们的“小算盘”依然变现难

栏目: 数据库 · 发布时间: 6年前

做AI+癌症诊断,巨头们的“小算盘”依然变现难

回顾近期智慧医疗领域的新闻,巨头们的动作不断。

去年7月,阿里发布“DoctorYou”AI系统,主要应用于医学影像诊断;去年8月,腾讯发布AI医学影像产品“觅影”,用于早期癌症诊断;今年9月,英特尔技术团队发布AI全周期健康管理系统,帮助提升乳腺癌筛查的检测精度和效率;不到一个月,谷歌又开发出了一种名为“淋巴结助手”的AI系统,采用癌症检测算法,能够自动评估淋巴结活检……

在梳理了巨头们的AI医疗产品后,智能相对论发现,“癌症诊断”成为了众多产品的一个共同点。在过去的一年里,BAT、谷歌、微软、苹果等科技企业均不遗余力地布局AI+医疗,而他们的第一步都十分有默契地选择了“癌症诊断”。

为什么“癌症诊断”成为了巨头们的“宠儿“呢?

外在驱动:时代的“号召”

资本永远是趋利的,广阔的市场空间,强有力的社会和技术保障,这些由外部环境带来的优势将会是AI+癌症诊断强大的背后支撑力。

1.有需求

一方面,我国人口老龄化趋势严重,工业化和城市化带来的环境污染以及生活习惯的改变,使得我国居民的肿瘤发病率和死亡率明显提高,恶性肿瘤已经成为我国居民的“头号杀手”,死亡比例在25%以上。

据全国肿瘤登记中心数据显示,在中国每年每十万人中有264人患癌,一生中22%的概率患癌症;每年每十万人有192人患癌死亡。

另一方面,2018年,很多行业都默契地提及了“消费升级”这一趋势,而放在医疗行业,“消费升级”的现象也同样存在,未来的患者消费趋势之一将会是加强肿瘤早期检测和管理,人们的早期筛查意识会提高。

与人们迫切意愿形成鲜明对比的是,医院里筛查癌症主要是通过化验血肿瘤指标及B超、CT、MRI、PET-CT等,检查方法的敏感性和特异性均不高,因此,社会上也呼吁更有效的早期筛查癌症的新技术和新方法。

2.有条件

首先,癌症治疗支付方的增加给癌症AI产品市场带来利好 。目前,大多数恶性肿瘤都包含在职工医保、城镇居民医保和从村合作医疗等不同种类医保的报销项目范围内。2012年,国家基药目录首次增补抗肿瘤药,包括2个辅助用药在内的26个化药以及1个中药已经被纳入大病医疗保险基金支付范围。农村医疗保障在2014年也开始向大病医疗转移,肺癌、胃癌等20种疾病治疗全部纳入大病医保范畴。

除了医保,还有商业保险,2012年以来,国内癌症保险在多种因素的共同合力下,呈现强进的市场增长趋势。据中国保险行业协会发布的《人身险产品联盟老年防癌疾病保险分析报告》显示,截止2017年6月底,老年防癌疾病保险的累计参加人数超过144万人,保费收入超过31亿元,共计为市场提供超过1560亿元癌症保障。

其次,计算机视觉技术的广泛使用能够加持癌症AI产品。 不论是抖音、快手等短视频的崛起,还是微信表情包的泛滥,毋庸置疑的是,人类社会已经进入视觉信息的大数据时代。视觉技术也被认为是推动当前经济进步的革命性技术,它已经被广泛应用于多个领域,包括人脸识别、自动驾驶、安防监控、工业检测、美图、医学影像等等。

在各种视觉数据的推动下,计算机视觉技术结合互联网,能够与医疗服务不断深入交叉融合,逐步形成一种新的前端变革形态,尤其是基于特征选择的机器学习技术,能够基于多尺度变换空间的特征提取海量特征,进而提升癌症的诊断效果。

做AI+癌症诊断,巨头们的“小算盘”依然变现难

人工智能辅助诊断流程图

图片来源:《卷积神经网络和迁移学习在癌症影像分析中的研究》余绍德

内在驱动:巨头的“小算盘”

1.AI+癌症诊断,其实是为了最大程度符合社会期待。

在大众的认知中,“癌症”基本等于“死亡”(事实并非如此),抗癌就是在与死神作斗争, 而在人与“神”的战斗中,但凡有一个产品能够为人们哪怕加持一个小小的光环,这个产品都会被给予无限赞誉。

另外,中国肿瘤患者的5年生存率在30%左右,远远落后于美国和日本的60%,在这种情况下,人们对于癌症防治的期待值并不高,与之相关的技术产品也难以得到人们全身心的信任和依赖,在人们眼里,癌症诊断的AI产品做得不好是十分正常的,毕竟人类医生的能力也十分有限。

所以,新技术的一点点进步可能都会得到人们积极的反馈,这就相当于一个考试总是得30分的学生,突然够到了及格线,即便不是最优秀的,但家长依旧会感到欣慰。这也是为什么众多AI产品不断强调自己的正确率高于人类诊断的原因。

2.“下注”癌症诊断,其实是为医学影像诊断的降维攻击打基础。

医学影像诊断是医疗的重要基础,是临床数据中最重要的诊断依据之一。医学影像分两个部分,一个是医学成像,也就是图像重建,利用AI实现少剂量成像,快速成像等。另一个是影像分析,也就是通过图像智能识别技术较大程度降低医生工作量。

巨头抢占癌症诊断的赛道,其实是采用了“擒贼先擒王”的计策。将人工智能技术用于癌症诊断中,是因为癌症种类多,病理复杂,能够整合更多的影像分析数据,让产品“学习”专家医生的医疗知识,模拟医生的思维和诊断推理。癌症的防治难度众所周知,仅仅从公众认知来看,如果癌症检测算法的准确率足够高,那其他疾病诊断是不是也不在话下呢?如果AI产品能以癌症为入口,进入整个医疗辅助诊断领域,患者们也将拥有更多的治疗选择。

变现困难,AI+癌症诊断还需要更多耐心

巨头们的想象都很美好,但“打脸”总是来得太快。IBM的沃森健康系统即便拥有了完善的肿瘤系统,但在与知名肿瘤专科医院MD Anderson合作中也摔了个跟头——沃森在2012年与MD Anderson签署协议,共同开发“肿瘤专家顾问”(Oncology Expert Advisor),仅四年后,德州大学审计办公室对该项目出具48页审计报告,终止了继续合作。

终止合作的原因有很多,但其中一个因素是“肿瘤专家顾问”难以成功推广到其他医院,即便MD Anderson在整个项目上花费了六千两百万美元。理想和现实总是有着太多差距,变现困难成为现如今AI癌症产品的难题。这还只是医院“大亏本”,如果放在国内,这六千两百万美元恐怕就是巨头们要支付的账单了。

探究其中原因,主要有两方面。

一方面, 在医疗的支付领域 ,我们上文中也提到,保险机构正在加强对患者的保障,但这种保障实质上制约了医疗机构的发展,医疗机构的营收取决于保险的赔付规则而非患者自费费用,这也就决定了医疗机构难以找寻有效的C端盈利方式和营销手段,也就制约了医疗机构中产品和技术的更新迭代。

另一方面, AI尚属新兴领域,入驻医疗机构需要大量的人力物力和资本的投入 ,但医院的公益性决定了其需要面临长期的亏损,这种特性要求企业不能有太强的退出期限,在产品落地的过程中,需要长期战略资本,而这种长期的消耗也导致巨头们在此领域频频受挫。

结论:

“癌症”,这两个字眼实在太过无情和可怖,所以,当巨头们纷纷入局AI+癌症诊断,其实是一件大家喜闻乐见的好事——如果企业能利用自身的技术和资本积累做出好的医疗产品,不仅形成了好的品牌的认知,更是为众多被病魔缠身的患者们带来一些生活的希望。

文 | 颜璇


以上所述就是小编给大家介绍的《做AI+癌症诊断,巨头们的“小算盘”依然变现难》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

媒介融合

媒介融合

[丹]延森 / 刘君 / 复旦大学出版社 / 2012-9 / 32.00元

“媒介融合”是什么,如何来认识,本书提供的视角令人赞叹。 作为丹麦知名教授,延森具有欧陆学者的气质:思辨、批判。在延森看来,媒介融合带来了研究上的转向——从作为技术的媒介转向作为实践的传播,后者的一个中心命题是 特定的媒介与传播实践将对社会组织(从微观到宏观)产生何种影响? 解决上述问题,首先需要解决交流与传播观念的理论规范问题,本书就是阶段性的成果:基于对交流/传播观念史的考察,建构......一起来看看 《媒介融合》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具