内容简介:最近在medium中看到William Koehrsen,发现其分享了数十篇python相关的高质量的数据分析文章。我想尽量抽时间将他的文章翻译过来,分享给大家。作者:William Koehrsen标题“《Random Forest Simple Explanation-Understanding the random forest with an intuitive example》
最近在medium中看到William Koehrsen,发现其分享了数十篇 python 相关的高质量的数据分析文章。我想尽量抽时间将他的文章翻译过来,分享给大家。
作者:William Koehrsen
标题“《Random Forest Simple Explanation-Understanding the random forest with an intuitive example》
翻译:大邓
昨天分享了 五分钟带你了解随机森林 ,今天我们以一个小案例来看看如何应用python来实现随机森林。
任务介绍
随机森林属于监督学习,训练模型时需要同时输入 特征矩阵X
和 靶向量target
。本文将使用 西雅图的NOAA气候网站
的数据,其中 靶向量target(因变量:实际气温)是连续型数值。
数据介绍
本文使用 西雅图的NOAA气候网站
的csv文件数据,该csv有9个字段,分别是
-
year:2016年
-
month: 月份
-
day:年份中的第几天
-
week:一周之中的第几天
-
temp_2:该条记录2天前的最高气温
-
temp_1:该条记录1天前的最高气温
-
average:历史上这天的平均最高气温
-
actual: 当天实际最高气温
-
friend: 某个朋友的预测值
执行步骤
在我们开始编程之前,我们应该提供一个简短的行动指南,让我们保持正确的轨道。 一旦我们遇到问题和模型,以下步骤就构成了任何机器学习工作流程的基础:
-
获取数据
-
准备机器学习模型数据
-
建立基准线模型(baseline)
-
在训练数据上训练模型
-
对测试数据进行预测
-
检验分类器训练的效果
获取数据
import pandas as pd features = pd.read_csv('temps.csv') features.head(5)
One-Hot编码
数据中的week列是文本数据,一共有7种。这里使用one-hot方式将其编码。其实week这一列对模型训练帮助很小,在这里也算帮助大家一起学习pandas
One-hot编码前:
One-hot编码后:
features = pd.get_dummies(features)
features.head(5)
特征矩阵和靶向量
#靶向量(因变量) targets = features['actual'] # 从特征矩阵中移除actual这一列 #axis=1表示移除列的方向是列方向 features= features.drop('actual', axis = 1) # 特征名列表 feature_list = list(features.columns)
将数据分为训练集和测试集
from sklearn.model_selection import train_test_split train_features, test_features, train_targets, test_targets = train_test_split(features, targets, test_size = 0.25, random_state = 42)
建立基准线模型(baseline)
为了能对比自己训练的模型好坏,我们建立一个参考的基准线。这里我们假设使用average看做基准线,看看训练出的随机森林模型预测效果与average这个基准比较对比孰优孰劣。
import numpy as np #选中test_features所有行 #选中test_features中average列 baseline_preds = test_features.loc[:, 'average'] baseline_errors = abs(baseline_preds - test_targets) print('平均误差: ', round(np.mean(baseline_errors), 2))
运行结果
平均基准误差: 5.06
训练随机森林模型
from sklearn.ensemble import RandomForestRegressor #1000个决策树 rf = RandomForestRegressor(n_estimators= 1000, random_state=42) rf.fit(train_features, train_targets)
运行结果
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)
检验模型训练效果
predictions = rf.predict(test_features) errors = abs(predictions - test_targets) print('平均误差:', round(np.mean(errors), 2))
运行解果
平均误差: 3.87
准确率
#计算平均绝对百分误差mean absolute percentage error (MAPE) mape = 100 * (errors / test_targets) accuracy = 100 - np.mean(mape) print('准确率:', round(accuracy, 2), '%.')
准确率: 93.94 %.
可视化决策树
模型中的决策树有 1000 个,这里我随便选一个决策树可视化。可视化部分发现在python3.7运行出问题。3.6正常
print('模型中的决策树有',len(rf.estimators_), '个')
运行结果
模型中的决策树有 1000 个
查看模型中前5个决策树
#从1000个决策树中抽选出前5个看看 rf.estimators_[:5]
运行结果
[DecisionTreeRegressor(criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=1608637542, splitter='best'), DecisionTreeRegressor(criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=1273642419, splitter='best'), DecisionTreeRegressor(criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=1935803228, splitter='best'), DecisionTreeRegressor(criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=787846414, splitter='best'), DecisionTreeRegressor(criterion='mse', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=996406378, splitter='best')]
在本文中只随机选择一个决策树将其可视化
from sklearn.tree import export_graphviz import pydot # 从这1000个决策树中,我心情好,就选第6个决策树吧。 tree = rf.estimators_[5] #将决策树输出到dot文件中 export_graphviz(tree, out_file = 'tree.dot', feature_names = feature_list, rounded = True, precision = 1) # 将dot文件转化为图结构 (graph, ) = pydot.graph_from_dot_file('tree.dot') #将graph图输出为png图片文件 graph.write_png('tree.png')
print('该决策树的最大深度(层数)是:', tree.tree_.max_depth)
运行结果
该决策树的最大深度(层数)是: 13
决策树层数太多,太复杂。我们精简决策树,设置max_depth=3
rf_small = RandomForestRegressor(n_estimators=10, max_depth = 3, random_state=42) rf_small.fit(train_features, train_labels) tree_small = rf_small.estimators_[5] export_graphviz(tree_small, out_file = 'small_tree.dot', feature_names = feature_list, rounded = True, precision = 1) (graph, ) = pydot.graph_from_dot_file('small_tree.dot') graph.write_png('small_tree.png')
特征重要性
#获得特征重要性信息 importances = list(rf.feature_importances_) feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(feature_list, importances)] #重要性从高到低排序 feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True) # Print out the feature and importances [print('Variable: {:20} Importance: {}'.format(*pair)) for pair in feature_importances]
运行结果
Variable: temp_1 Importance: 0.66 Variable: average Importance: 0.15 Variable: forecast_noaa Importance: 0.05 Variable: forecast_acc Importance: 0.03 Variable: day Importance: 0.02 Variable: temp_2 Importance: 0.02 Variable: forecast_under Importance: 0.02 Variable: friend Importance: 0.02 Variable: month Importance: 0.01 Variable: year Importance: 0.0 Variable: week_Fri Importance: 0.0 Variable: week_Mon Importance: 0.0 Variable: week_Sat Importance: 0.0 Variable: week_Sun Importance: 0.0 Variable: week_Thurs Importance: 0.0 Variable: week_Tues Importance: 0.0 Variable: week_Wed Importance: 0.0
特征重要性可视化
import matplotlib.pyplot as plt %matplotlib inline #设置画布风格 plt.style.use('fivethirtyeight') # list of x locations for plotting x_values = list(range(len(importances))) # Make a bar chart plt.bar(x_values, importances, orientation = 'vertical') # Tick labels for x axis plt.xticks(x_values, feature_list, rotation='vertical') # Axis labels and title plt.ylabel('Importance'); plt.xlabel('Variable'); plt.title('Variable Importances');
(看到这里了,大家帮忙动动金手指支持大邓创作O(∩_∩)O~)
精选文章
深度学习之 图解LSTM
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
CSS实战手册(第2版)
[美] David Sawyer McFarland / 俞黎敏 / 电子工业出版社 / 2010-6 / 69.80元
本书从介绍最基本的CSS知识开始,到建立用于打印网页的CSS和改进你的CSS习惯的最佳实践。将关于CSS的选择器、继承、层叠、格式化、边距、填充、边框、图片、网站导航、表格、表单、浮动布局、定位网页上的元素,以及用于打印网页的CSS等技术通过逐步地讲解与教程串联了起来。每章内容从简单到复杂,一步一步地建立起一个完整的教程示例,并在每章都会详细讨论一些技巧、最佳实践和各浏览器之间一致性的兼容问题及如......一起来看看 《CSS实战手册(第2版)》 这本书的介绍吧!
URL 编码/解码
URL 编码/解码
RGB HSV 转换
RGB HSV 互转工具