最大流问题之Ford-Fulkerson算法

栏目: 编程工具 · 发布时间: 6年前

内容简介:Ford-Fulkerson算法(亦即标号法?)的输入与步骤如下:

Ford-Fulkerson算法(亦即标号法?)的输入与步骤如下:

  • 输入
    • 给定一个容量为c的图G=(V, E),源点s与汇点(终点)t
  • 步骤
    1. 对图G中每一个边(u, v)的流量f(u, v)进行初始化为0
    2. 查询过程: 寻找(DFS、深度优先搜索方式)图G中的一条路径p,其中每一条边(u, v) ∈p,都有fc(u, v) = c(u, v) - f(u, v) > 0(c(u, v) 代表当前边的容量,f(u, v) 代表当前边已有的流量,即c(u, v) - f(u, v)代表当前边可用的最大流量,即剩余流量)
    3. 调整过程 :计算当前路径下每条边的最小剩余容量,cf(p) = min{fc(u, v) : (u, v) ∈p},然后对于每条边进行如下操作:
      • f(u, v) = f(u, v) + cf(p) (前向狐)
      • f(v, u) = f(v, u) - cf(p) (后向狐)
    4. 往复上述2与3步骤,直至无法找到路径p为止
#!/bin/python
class Edge(object):
    def __init__(self, u, v, w):
        self.source = u
        self.sink = v  
        self.capacity = w
    def __repr__(self):
        return "%s->%s:%s" % (self.source, self.sink, self.capacity)

class FlowNetwork(object):
    def __init__(self):
        self.adj = {}
        self.flow = {}
 
    def add_vertex(self, vertex):
        self.adj[vertex] = []
 
    def get_edges(self, v):
        return self.adj[v]
 
    def add_edge(self, u, v, w=0):
        if u == v:
            raise ValueError("u == v")
        edge = Edge(u,v,w)
        redge = Edge(v,u,0)
        edge.redge = redge
        redge.redge = edge
        self.adj[u].append(edge)
        self.adj[v].append(redge)
        self.flow[edge] = 0
        self.flow[redge] = 0
 
    def find_path(self, source, sink, path):
        if source == sink:
            return path
        for edge in self.get_edges(source):
            residual = edge.capacity - self.flow[edge]
            if residual > 0 and edge not in path:
                result = self.find_path( edge.sink, sink, path + [edge]) 
                if result != None:
                    return result
 
    def max_flow(self, source, sink):
        path = self.find_path(source, sink, [])
        while path != None:
            residuals = [edge.capacity - self.flow[edge] for edge in path]
            flow = min(residuals)
            for edge in path:
                self.flow[edge] += flow
                self.flow[edge.redge] -= flow
            path = self.find_path(source, sink, [])
        for edge in self.get_edges(source):
        return sum(self.flow[edge] for edge in self.get_edges(source))

g = FlowNetwork()
[g.add_vertex(v) for v in "sopqrt"]
g.add_edge('s','o',3)
g.add_edge('s','p',3)
g.add_edge('o','p',2)
g.add_edge('o','q',3)
g.add_edge('p','r',2)
g.add_edge('r','t',3)
g.add_edge('q','r',4)
g.add_edge('q','t',2)
print (g.max_flow('s','t')) #5

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

搜索引擎

搜索引擎

(美)克罗夫特 / 机械工业出版社 / 2009-10 / 45.00元

《搜索引擎:信息检索实践(英文版)》介绍了信息检索(1R)中的关键问题。以及这些问题如何影响搜索引擎的设计与实现,并且用数学模型强化了重要的概念。对于网络搜索引擎这一重要的话题,书中主要涵盖了在网络上广泛使用的搜索技术。 《搜索引擎:信息检索实践(英文版)》适用于高等院校计算机科学或计算机工程专业的本科生、研究生,对于专业人士而言,《搜索引擎:信息检索实践(英文版)》也不失为一本理想的入门教......一起来看看 《搜索引擎》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具