最大流问题之Ford-Fulkerson算法

栏目: 编程工具 · 发布时间: 6年前

内容简介:Ford-Fulkerson算法(亦即标号法?)的输入与步骤如下:

Ford-Fulkerson算法(亦即标号法?)的输入与步骤如下:

  • 输入
    • 给定一个容量为c的图G=(V, E),源点s与汇点(终点)t
  • 步骤
    1. 对图G中每一个边(u, v)的流量f(u, v)进行初始化为0
    2. 查询过程: 寻找(DFS、深度优先搜索方式)图G中的一条路径p,其中每一条边(u, v) ∈p,都有fc(u, v) = c(u, v) - f(u, v) > 0(c(u, v) 代表当前边的容量,f(u, v) 代表当前边已有的流量,即c(u, v) - f(u, v)代表当前边可用的最大流量,即剩余流量)
    3. 调整过程 :计算当前路径下每条边的最小剩余容量,cf(p) = min{fc(u, v) : (u, v) ∈p},然后对于每条边进行如下操作:
      • f(u, v) = f(u, v) + cf(p) (前向狐)
      • f(v, u) = f(v, u) - cf(p) (后向狐)
    4. 往复上述2与3步骤,直至无法找到路径p为止
#!/bin/python
class Edge(object):
    def __init__(self, u, v, w):
        self.source = u
        self.sink = v  
        self.capacity = w
    def __repr__(self):
        return "%s->%s:%s" % (self.source, self.sink, self.capacity)

class FlowNetwork(object):
    def __init__(self):
        self.adj = {}
        self.flow = {}
 
    def add_vertex(self, vertex):
        self.adj[vertex] = []
 
    def get_edges(self, v):
        return self.adj[v]
 
    def add_edge(self, u, v, w=0):
        if u == v:
            raise ValueError("u == v")
        edge = Edge(u,v,w)
        redge = Edge(v,u,0)
        edge.redge = redge
        redge.redge = edge
        self.adj[u].append(edge)
        self.adj[v].append(redge)
        self.flow[edge] = 0
        self.flow[redge] = 0
 
    def find_path(self, source, sink, path):
        if source == sink:
            return path
        for edge in self.get_edges(source):
            residual = edge.capacity - self.flow[edge]
            if residual > 0 and edge not in path:
                result = self.find_path( edge.sink, sink, path + [edge]) 
                if result != None:
                    return result
 
    def max_flow(self, source, sink):
        path = self.find_path(source, sink, [])
        while path != None:
            residuals = [edge.capacity - self.flow[edge] for edge in path]
            flow = min(residuals)
            for edge in path:
                self.flow[edge] += flow
                self.flow[edge.redge] -= flow
            path = self.find_path(source, sink, [])
        for edge in self.get_edges(source):
        return sum(self.flow[edge] for edge in self.get_edges(source))

g = FlowNetwork()
[g.add_vertex(v) for v in "sopqrt"]
g.add_edge('s','o',3)
g.add_edge('s','p',3)
g.add_edge('o','p',2)
g.add_edge('o','q',3)
g.add_edge('p','r',2)
g.add_edge('r','t',3)
g.add_edge('q','r',4)
g.add_edge('q','t',2)
print (g.max_flow('s','t')) #5

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Iterative Methods for Sparse Linear Systems, Second Edition

Iterative Methods for Sparse Linear Systems, Second Edition

Yousef Saad / Society for Industrial and Applied Mathematics / 2003-04-30 / USD 102.00

Tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of linear and nonlinear systems arisi......一起来看看 《Iterative Methods for Sparse Linear Systems, Second Edition》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换