内容简介:(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )在NLP中有一个非常实用的应用领域--情感分析,情感分析是用NLP技术分析一段给定文本的情感类型,是积极的还是消极的,是乐观的还是悲观的等。比如在股市中,我们知道,往往大众最悲观的时候往往是股市的大底,而最乐观的时候却是股市的顶部,所以,如果我们能够掌握大众的心里情感状况,那么也就能大概知道股市的底和顶,换言之,也就能够在股市上挣得大把大把的银子了。
(本文所使用的 Python 库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )
在NLP中有一个非常实用的应用领域--情感分析,情感分析是用NLP技术分析一段给定文本的情感类型,是积极的还是消极的,是乐观的还是悲观的等。比如在股市中,我们知道,往往大众最悲观的时候往往是股市的大底,而最乐观的时候却是股市的顶部,所以,如果我们能够掌握大众的心里情感状况,那么也就能大概知道股市的底和顶,换言之,也就能够在股市上挣得大把大把的银子了。
1. 准备数据集
本项目所使用的数据集也是由nltk内部提供,其中的corpus模块中有movies_reviews,可以给我们提供“积极”和“消极”的语句文本。
# 1, 准备数据集 from nltk.corpus import movie_reviews pos_fileIds=movie_reviews.fileids('pos') # 加载积极文本文件 neg_fileIds=movie_reviews.fileids('neg') # 消极文本文件 print(len(pos_fileIds)) # 1000 print(len(neg_fileIds)) # 1000 print(pos_fileIds[:5]) print(neg_fileIds[:5]) # 由此可看出,movie_reviews.fileids是加载各种类别文本的文件, # 并返回该文件名组成的list # 如果想要查看某个文本文件的内容,可以使用 print(movie_reviews.words(fileids=['pos/cv000_29590.txt'])) 复制代码
-------------------------------------输---------出--------------------------------
1000 1000 ['pos/cv000_29590.txt', 'pos/cv001_18431.txt', 'pos/cv002_15918.txt', 'pos/cv003_11664.txt', 'pos/cv004_11636.txt'] ['neg/cv000_29416.txt', 'neg/cv001_19502.txt', 'neg/cv002_17424.txt', 'neg/cv003_12683.txt', 'neg/cv004_12641.txt'] ['films', 'adapted', 'from', 'comic', 'books', 'have', ...]
--------------------------------------------完-------------------------------------
虽然上面把文本文件的名称提取出来,但是我们还需要从这些txt文件中提取出所需要的特征,使用这些特征才能进行后续的分类器建模。
# 2, 处理数据集 def extract_features(word_list): '''专门一个函数来提取特征''' return dict([(word,True) for word in word_list]) # 此处加True的作用是构成dict,实质意义不大 pos_features=[(extract_features(movie_reviews.words(fileids=[f])),'Pos') for f in pos_fileIds] neg_features=[(extract_features(movie_reviews.words(fileids=[f])),'Neg') for f in neg_fileIds] print(pos_features[:3]) # 打印下看看内容是否正确 dataset=pos_features+neg_features # 将两部分结合起来作为一个dataset 复制代码
打印出来的结果很长,可以参考 我的github 里面的代码。
2. 建立模型,训练特征
# 构建模型,训练模型 from nltk import NaiveBayesClassifier from nltk.classify import accuracy as nltk_accuracy np.random.shuffle(dataset) rows=int(len(dataset)*0.8) # 80%为train set train_set,test_set=dataset[:rows],dataset[rows:] print('Num of train_set: ',len(train_set), '/nNum of test_set: ',len(test_set)) clf=NaiveBayesClassifier.train(train_set) # 查看该模型在test set上的表现 acc=nltk_accuracy(clf,test_set) print('Accuracy: {:.2f}%'.format(acc*100)) 复制代码
-------------------输---------出-----------------------
Num of train_set: 1600
Num of test_set: 400
Accuracy: 70.75%
-------------------------完---------------------------
由此可以看出该模型在测试集上的表现为:准确率70.75%
# 查看模型内部信息 # 该分类器是分析某段文本中哪些单词与“积极”的关联最大, # 哪些与“消极”的关联最大,进而分析这些关键词的出现来判断某句话是积极或消极 # 打印这些关键词 for key_word in clf.most_informative_features()[:10]: print(key_word[0]) 复制代码
----------------输---------出-----------------------
outstanding
insulting
ludicrous
affecting
magnificent
breathtaking
avoids
strongest
fascination
slip
------------------------完-------------------------
可以看出,这些关键词对于区分一个句子是积极还是消极有着至关重要的作用,或者说,如果某个句子中有了这些关键词,就可以区分这个句子的情感是积极还是消极,这些单词越多,模型预测的准确率就越高。
3. 用成熟模型预测新样本
# 用该模型来预测新样本,查看新句子的情感是积极还是消极 new_samples = [ "It is an amazing movie", "This is a dull movie. I would never recommend it to anyone.", "The cinematography is pretty great in this movie", "The direction was terrible and the story was all over the place" ] for sample in new_samples: predict_P=clf.prob_classify(extract_features(sample.split())) pred_sentiment=predict_P.max() print('Sample: {}, Type: {}, Probability: {:.2f}%'.format( sample,pred_sentiment,predict_P.prob(pred_sentiment)*100)) 复制代码
----------------输---------出-----------------------
Sample: It is an amazing movie, Type: Pos, Probability: 61.45%
Sample: This is a dull movie. I would never recommend it to anyone., Type: Neg, Probability: 80.12%
Sample: The cinematography is pretty great in this movie, Type: Pos, Probability: 63.63%
Sample: The direction was terrible and the story was all over the place, Type: Neg, Probability: 63.89%
------------------------完----------------------------
########################小**********结###############################
1,NLTK中所使用的分类器需要用dict类型的数据作为features来数据,故而我们需要自定义一个extract_features函数,来将单词转变为dict类型。
2,NLTK中已经集成了很多分类器,比如NaiveBayesClassifier,这些分类器已经集成了字符串处理方面的各种细节,使用起来很方便。
#################################################################
注:本部分代码已经全部上传到( 我的github )上,欢迎下载。
参考资料:
1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 确定句子Python的时态
- IEMLRN:基于图像增强的句子语义表示
- 谷歌 NLP 新进展:利用 AI 改变句子的情绪、时态
- 基于GRU和am-softmax的句子相似度模型
- FAIR 最新论文:一种不需要训练就能探索句子分类的随机编码器
- 当莎士比亚遇见Google Flax:教你用字符级语言模型和归递神经网络写“莎士比亚”式句子...
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。