内容简介:PredictionIO 是一个用Scala编写的开源机器学习服务器应用,可以帮助你方便地使用RESTFul API搭建推荐引擎。 PredictionIO的核心使用的是一个可伸缩的机器学习库,基于Spark一个完整的端到端Pipeline,让使用者可以非常简单的从零开始搭建一个推荐系统。 "PredictionIO 是由三个元件所组成:官方有提供快速的一键安装方法,当然也可以手动安装。
PredictionIO 是一个用Scala编写的开源机器学习服务器应用,可以帮助你方便地使用RESTFul API搭建推荐引擎。 PredictionIO的核心使用的是一个可伸缩的机器学习库,基于Spark一个完整的端到端Pipeline,让使用者可以非常简单的从零开始搭建一个推荐系统。 "
PredictionIO 是由三个元件所组成:
- PredictionIO platform
- Event Server: 收集来自应用程式的资料,可以是即时也可以定时。
- Engine: 训练模型,并且将结果以 Restful API 提供查询。
Install
官方有提供快速的一键安装方法,当然也可以手动安装。
$ bash -c "$(curl -s https://install.prediction.io/install.sh)" $ PATH=$PATH:/home/yourname/PredictionIO/bin; export PATH 复制代码
透过以下指定可以检查是否安装成功,会回传每一种套件所连接的状况
$ pio status ### Return: [INFO] [Console$] Inspecting PredictionIO... [INFO] [Console$] PredictionIO 0.9.6 is installed at ... [INFO] [Console$] Inspecting Apache Spark... [INFO] [Console$] Apache Spark is installed at ... [INFO] [Console$] Apache Spark 1.6.0 detected ... [INFO] [Console$] Inspecting storage backend connections... [INFO] [Storage$] Verifying Meta Data Backend (Source: MYSQL)... [INFO] [Storage$] Verifying Model Data Backend (Source: MYSQL)... [INFO] [Storage$] Verifying Event Data Backend (Source: MYSQL)... [INFO] [Storage$] Test writing to Event Store (App Id 0)... [INFO] [Console$] (sleeping 5 seconds for all messages to show up...) [INFO] [Console$] Your system is all ready to go. 复制代码
Quick Start
Step 1. Run PredictionIO
先执行 PredictionIO 主程式,针对不同的储存器,有不同的执行方法。
$ pio eventserver & # If you are using PostgreSQL or MySQL, run the following to start PredictionIO Event Server or $ pio-start-all # If instead you are running HBase and Elasticsearch, run the following to start all PredictionIO Event Server, HBase, and Elasticsearch 复制代码
Step 2. Create a new Engine from an Engine Template
选择Engine Templates 一个适合的 Engine。
$ pio template get <template-repo-path> <your-app-directory> $ cd MyRecommendation 复制代码
可以从Engine Templates 选择,也可以自定义,在这边我们使用 Universal Recommender
作为范例。
Step 3. Generate an App ID and Access Key
执行指定从 Engine 产生一个 APP 并取得对应的 Key。
$ pio app new MyRecommendation ### Return: [INFO] [App$] Initialized Event Store for this app ID: 1. [INFO] [App$] Created new app: [INFO] [App$] Name: MyRecommendation [INFO] [App$] ID: 1 [INFO] [App$] Access Key: ... $ pio app list ### Return: [INFO] [App$] Name | ID | Access Key | Allowed Event(s) [INFO] [App$] MyRecommendation | 1 | ... | (all) [INFO] [App$] Finished listing 1 app(s). 复制代码
Step 4. Collecting Data
接着要汇入资料,最基本的推荐演算法(Cooperative Filtering, CF)格式支元: user
- action
- item
三种元素。使用 data/import_eventserver.py
可以将符合格式的资料汇入资料库。
$ curl <sample_data> --create-dirs -o data/<sample_data> $ python data/import_eventserver.py --access_key <access-key> 复制代码
... 0::2::3 0::3::1 3::9::4 6::9::1 ... 复制代码
Step 5. Deploy the Engine as a Service
在部署应用程式之前,先在 Engine.json 中设定基础资料,像是 appName 或是演算法要运行几次之类的。
... "datasource": { "params" : { "appName": MyRecommendation # make sure the appName parameter match your App Name } }, ... 复制代码
部署系统到 Web Service 时,过程中分成三个步骤: pio build -> pio train -> pio deploy Building 负责准备 Spark 的基础环境及资料准备。 Training 负责执行演算法建模。 Deployment 则是将结果运行在 Web Service 上,并以 Restful API 开放。
- Bulid and Training the Predictive Model
$ pio build ### Return: [INFO] [Console$] Your engine is ready for training. $ pio train ### Return: [INFO] [CoreWorkflow$] Training completed successfully. $ pio deploy ### Return: [INFO] [HttpListener] Bound to /0.0.0.0:8000 [INFO] [MasterActor] Bind successful. Ready to serve. 复制代码
Step 6. Use the Engine
然后就是执行了,预设会开在 port 8000,参数输入 使用者
即要推荐的 商品数量
。
$ curl -H "Content-Type: application/json" \ -d '{ "user": "1", "num": 4 }' https://localhost:8000/queries.json ### Retnrn: { "itemScores":[ {"item":"22","score":4.072304374729956}, {"item":"62","score":4.058482414005789}, {"item":"75","score":4.046063009943821}, {"item":"68","score":3.8153661512945325} ] } 复制代码
以上所述就是小编给大家介绍的《PredictionIO:开源的推荐系统》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 开源推荐 | CoDo开源一站式DevOps平台
- 一周 GitHub 开源项目推荐
- 开源年会 COSCon'18 之开源硬件论坛 | 深圳湾推荐
- 阿里淘系优质开源项目推荐
- GitHub关键字扫描开源工具推荐
- Facebook开源深度学习推荐模型DLRM
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
jQuery 技术内幕
高云 / 机械工业出版社 / 2014-1-1 / 99元
本书首先通过“总体架构”梳理了各个模块的分类、功能和依赖关系,让大家对jQuery的工作原理有大致的印象;进而通过“构造 jQuery 对象”章节分析了构造函数 jQuery() 的各种用法和内部构造过程;接着详细分析了底层支持模块的源码实现,包括:选择器 Sizzle、异步队列 Deferred、数据缓存 Data、队列 Queue、浏览器功能测试 Support;最后详细分析了功能模块的源码实......一起来看看 《jQuery 技术内幕》 这本书的介绍吧!