编译 TensorFlow 的 C/C++ 接口

栏目: C++ · 发布时间: 6年前

内容简介:TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口。安装环境: Ubuntu 16.04 Python 3.5 CUDA 9.0 cuDNN 7 Bazel 0.17.2 TensorFlow 1.11.0获取更多精彩,请关注「seniusen」!

TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口。

安装环境: Ubuntu 16.04 Python 3.5 CUDA 9.0 cuDNN 7 Bazel 0.17.2 TensorFlow 1.11.0

1. 安装 Bazel

  • 安装 JDK sudo apt-get install openjdk-8-jdk

  • 添加 Bazel 软件源

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
复制代码

2. 编译 TensorFlow 库

You have bazel 0.17.2 installed.
Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3.5


Found possible Python library paths:
  /usr/local/lib/python3.5/dist-packages
  /usr/lib/python3/dist-packages
Please input the desired Python library path to use.  Default is [/usr/local/lib/python3.5/dist-packages]

Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: n
No Apache Ignite support will be enabled for TensorFlow.

Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow.

Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow.

Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow.

Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow.

Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: 


Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 


Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 


Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 


Do you wish to build TensorFlow with TensorRT support? [y/N]: n
No TensorRT support will be enabled for TensorFlow.

Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: 


Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1]: 


Do you want to use clang as CUDA compiler? [y/N]: n
nvcc will be used as CUDA compiler.

Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 


Do you wish to build TensorFlow with MPI support? [y/N]: n
No MPI support will be enabled for TensorFlow.

Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: 


Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds.

Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
	--config=mkl         	# Build with MKL support.
	--config=monolithic  	# Config for mostly static monolithic build.
	--config=gdr         	# Build with GDR support.
	--config=verbs       	# Build with libverbs support.
	--config=ngraph      	# Build with Intel nGraph support.
Configuration finished
复制代码
  • 进入 tensorflow 目录进行编译,编译成功后,在 /bazel-bin/tensorflow 目录下会出现 libtensorflow_cc.so 文件
C版本: bazel build :libtensorflow.so
C++版本: bazel build :libtensorflow_cc.so
复制代码

3. 编译其他依赖

  • 进入 tensorflow/contrib/makefile 目录下,运行 ./build_all_linux.sh ,成功后会出现一个gen文件夹

  • 若出现如下错误 /autogen.sh: 4: autoreconf: not found ,安装相应依赖即可 sudo apt-get install autoconf automake libtool

4. 测试

  • Cmaklist.txt
cmake_minimum_required(VERSION 3.8)
project(Tensorflow_test)

set(CMAKE_CXX_STANDARD 11)

set(SOURCE_FILES main.cpp)


include_directories(
        /media/lab/data/yongsen/tensorflow-master
        /media/lab/data/yongsen/tensorflow-master/tensorflow/bazel-genfiles
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/protobuf/include
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/host_obj
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/proto
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/nsync/public
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/eigen
        /media/lab/data/yongsen/tensorflow-master/bazel-out/local_linux-py3-opt/genfiles
        /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/absl
)

add_executable(Tensorflow_test ${SOURCE_FILES})

target_link_libraries(Tensorflow_test
        /media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_cc.so
        /media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_framework.so
        )
复制代码
  • 创建回话
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>

using namespace std;
using namespace tensorflow;

int main()
{
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        cout << status.ToString() << "\n";
        return 1;
    }
    cout << "Session successfully created.\n";
    return 0;
}
复制代码
  • 查看 TensorFlow 版本
#include <iostream>
#include <tensorflow/c/c_api.h>

int main() {
   std:: cout << "Hello from TensorFlow C library version" << TF_Version();
    return 0;
}

// Hello from TensorFlow C library version1.11.0-rc1
复制代码
  • 若提示缺少某些头文件则在 tensorflow 根目录下搜索具体路径,然后添加到 Cmakelist 里面即可。

获取更多精彩,请关注「seniusen」!

编译 TensorFlow 的 C/C++ 接口

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

新媒体营销概论

新媒体营销概论

秋叶、刘勇 / 人民邮电出版社 / 2016-12-1 / 36.00

本书共分6章。第1章重点介绍了新媒体的概念和特征,引导读者全面认识新媒体所处的行业;第2章用历史发展的眼光,介绍了不同类型的新媒体,让读者不仅能看到最新的新媒体模式,也能看到这个模式发展背后的脉络;第3章重点介绍了新媒体广告投放载体,便于读者选择适合自己的新媒体运营方式;第4章介绍了新媒体运营的策划思维;第5章介绍了新媒体舆情管理知识;第6章选取了可口可乐、海底捞、恒大冰泉等的新媒体助力传统行业转......一起来看看 《新媒体营销概论》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具