内容简介:雷锋网据悉,mmdetection 检测库是基于商汤在 COCO 比赛(Detection 2018 winner)时的 codebase 重构,这个开源库提供了已公开发表的多种视觉检测核心模块,通过这些模块的组合,可以迅速搭建出各种著名的检测框架。据该开源库作者之一、香港中文大学陈恺介绍,这一版本中实现了 RPN,Fast R-CNN,Faster R-CNN,Mask R-CNN,近期还计划释放 RetinaNet 和 Cascade R-CNN。mmcv 是一个基础库,主要分为两个部分,一部分是和
雷锋网 (公众号:雷锋网) AI 科技评论消息,10 月 12 日,商汤科技正式开源 mmdetection 和 mmcv 两个项目。
据悉,mmdetection 检测库是基于商汤在 COCO 比赛(Detection 2018 winner)时的 codebase 重构,这个开源库提供了已公开发表的多种视觉检测核心模块,通过这些模块的组合,可以迅速搭建出各种著名的检测框架。据该开源库作者之一、香港中文大学陈恺介绍,这一版本中实现了 RPN,Fast R-CNN,Faster R-CNN,Mask R-CNN,近期还计划释放 RetinaNet 和 Cascade R-CNN。
mmcv 是一个基础库,主要分为两个部分,一部分是和 deep learning framework 无关的一些 工具 函数,比如 IO/Image/Video 相关的一些操作,另一部分是为 PyTorch 写的一套训练工具,可以大大减少用户需要写的代码量,同时让整个流程的定制变得容易。
在该库开源之后,知乎上有人提出问题:
如何评价商汤开源的 mm-detection 检测库?mm-detection 相比 FAIR 的 Detectron 如何?
陈恺也第一时间进行解答,他表示,mmdetection 和 Detectron 主要有如下三点差异:
-
performance 稍高
-
训练速度稍快
-
所需显存稍小
他进一步解释道,在 performance 上 ,由于 PyTorch 官方 model zoo 里的 ResNet 结构和 Detectron 所用的 ResNet 有细微差别(mmdetection 中可以通过 backbone 的 style 参数指定),导致模型收敛速度不一样。他们用两种结构都进行了实验,和 Detectron 使用相同的 pretrain model 的情况下,performance 比 Detectron 稍高,在使用 PyTorch 官方的 model 进行训练时, 1x 的 lr schedule 下比 Detectron 的 performance 略低,但 2x 的情况下更高。
速度方面 Mask R-CNN 的差异比较大,其余框架的差异很小。采用相同的 setting,Detectron 每个 iteration 需要 0.89s,而 mmdetection 只需要 0.69s。Fast R-CNN 比较例外,比 Detectron 的速度稍慢。另外,他们在服务器上跑 Detectron 会比官方 report 的速度慢 20% 左右,他提出猜测,可能是 FB 的 Big Basin 服务器性能比他们好。
在显存方面这一检测库的优势比较明显,会小 30% 左右。但他表示,这和框架有关,不完全是 codebase 优化的功劳。一个让他们比较意外的结果是,现在的 codebase 版本跑 ResNet-50 的 Mask R-CNN,每张卡(12 G)可以放 4 张图,显存消耗比他们在 COCO 比赛时小了不少。
雷锋网版权文章,未经授权禁止转载。详情见 转载须知 。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 清华&商汤开源超高精度边缘感知人脸对齐算法
- 商汤开源最大目标跟踪库PySOT,代码已正式上线!
- 商汤开源利用无标注数据大幅提高精度的人脸识别算法
- 三次成功挑战目标跟踪算法极限,商汤开源 SiamRPN 系列算法
- 一个基于PyTorch的目标检测工具箱,商汤联合港中文开源mmdetection
- 重磅!商汤开源最大目标跟踪库PySOT:含SiamRPN++和SiamMask等算法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。