内容简介:先附上一句SQL,使用tpc-ds的表结构,我们围绕这句SQL讲。其中,extraStrategies是提供给外部人员可以自己添加的策略。调用这些strategies的代码如下:将strategies逐个去应用在逻辑计划上,然后做flat操作,返回一个
先附上一句SQL,使用tpc-ds的表结构,我们围绕这句 SQL 讲。
- SQL:
SQL> select avg(cs_ext_discount_amt) from catalog_sales, date_dim where d_date between ‘1999-02-22’ and cast(‘1999-05-22’ as date) and d_date_sk = cs_sold_date_sk group by cs_sold_date_sk;
- 逻辑计划:
Aggregate [cs_sold_date_sk#24], [cast((avg(UnscaledValue(cs_ext_discount_amt#46)) / 100.0) as decimal(11,6)) AS avg(cs_ext_discount_amt)#149] +- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] +- Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) :- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] : +- Filter isnotnull(cs_sold_date_sk#24) : +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields] +- Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
物理计划源码分析
物理策略
def strategies: Seq[Strategy] = extraStrategies ++ ( FileSourceStrategy :: DataSourceStrategy :: DDLStrategy :: SpecialLimits :: Aggregation :: JoinSelection :: InMemoryScans :: BasicOperators :: Nil)
其中,extraStrategies是提供给外部人员可以自己添加的策略。调用这些strategies的代码如下:
// Collect physical plan candidates. val candidates = strategies.iterator.flatMap(_(plan))
将strategies逐个去应用在逻辑计划上,然后做flat操作,返回一个 PhysicalPlan
的iterator。那么每个策略什么作用?
FileSourceStrategy
一个针对Hadoop文件系统做的策略,当执行计划的底层Relation是 HadoopFsRelation
时会调用到,用来扫描文件。
DataSourceStrategy
Spark针对DataSource预定义了四种scan接口, TableScan
、 PrunedScan
、 PrunedFilteredScan
、 CatalystScan
(其中 CatalystScan
是unstable的,也是不常用的),如果开发者(用户)自己实现的DataSource是实现了这四种接口之一的,在scan到执行计划的底层Relation时,就会调用来扫描文件。
DDLStrategy(2.2中已经消失了,2.1中有)
会在create table的时候调用,因为后续版本不会存在,所以不做解释。
SpecialLimits
在Spark SQL中加limit n时候回调用到(如果不指定,Spark 默认也会limit 20),在源码中,会给每种case的limit节点的子节点使用 PlanLater
,这是个很神奇的东西下文会讲到。
Aggregation
顾名思义,执行聚合函数的策略。
JoinSelection
执行join的策略。Join的执行策略也同样分BroadcastJoin(也就是MapSideJoin),和ShuffledJoin,这个之后的文章会展开讲。
InMemoryScans
当数据在内存中被缓存过,就会用到该策略。
BasicOperators
一些基本操作的执行策略,如flatMap,sort,project等,但是实际上大都是给这些节点的子节点套上一个 PlanLater
。
PlanLater
Spark SQL物理计划里一个非常重要的概念。字面意思很好理解,就是之后再计划。那么经过以上策略逐个去执行以后,原来的逻辑计划会变成什么样呢?
ReturnAnswer +- GlobalLimit 21 +- LocalLimit 21 +- PlanLater Aggregate [cs_sold_date_sk#24], [cast((avg(UnscaledValue(cs_ext_discount_amt#46)) / 100.0) as decimal(11,6)) AS avg(cs_ext_discount_amt)#149] , Aggregate [cs_sold_date_sk#24], [cast((avg(UnscaledValue(cs_ext_discount_amt#46)) / 100.0) as decimal(11,6)) AS avg(cs_ext_discount_amt)#149] +- PlanLater Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] , Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] +- PlanLater Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) :- PlanLater Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] , Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] : +- Filter isnotnull(cs_sold_date_sk#24) : +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields] +- PlanLater Project [d_date_sk#58] , Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
有什么差别呢?主要有二:
-
-
顶层多了个
ReturnAnswer
和Limit
节点
-
顶层多了个
-
-
Aggregate
、Project
、Join
节点都用了PlanLater
-
(其实 Filter
节点也是可以用 PlanLater
的,但是由于逻辑计划已经将 Filter
下推至底部,所以最底部的Project->Filter->Relation的三层节点是可以直接调用一个策略去执行的,因此只需要三层节点的最上层也就是Project节点使用 PlanLater
即可。)
言归正传,语法树顶部多了 ReturnAnswer
和 Limit
节点,很容易理解, Limit
是Spark SQL默认限制行数, ReturnAnswer
是将结果返回。那么加的PlanLater有什么作用?我的理解是,将物理计划分割成一段段,每一段物理计划会有其对应策略来执行。具体源码如下:
def plan(plan: LogicalPlan): Iterator[PhysicalPlan] = { // Obviously a lot to do here still... // Collect physical plan candidates. val candidates = strategies.iterator.flatMap(_(plan)) // The candidates may contain placeholders marked as [[planLater]], // so try to replace them by their child plans. val plans = candidates.flatMap { candidate => val placeholders = collectPlaceholders(candidate) if (placeholders.isEmpty) { // Take the candidate as is because it does not contain placeholders. Iterator(candidate) } else { // Plan the logical plan marked as [[planLater]] and replace the placeholders. placeholders.iterator.foldLeft(Iterator(candidate)) { case (candidatesWithPlaceholders, (placeholder, logicalPlan)) => // Plan the logical plan for the placeholder. val childPlans = this.plan(logicalPlan) candidatesWithPlaceholders.flatMap { candidateWithPlaceholders => childPlans.map { childPlan => // Replace the placeholder by the child plan candidateWithPlaceholders.transformUp { case p if p == placeholder => childPlan } } } } } } val pruned = prunePlans(plans) assert(pruned.hasNext, s"No plan for $plan") pruned }
可以看到,经过策略迭代器和flat过后的candidates候选计划们(一般来说只有一个,是最顶层的planLater),然后收集placeholder(其实就是planlater),这个时候对placeholders进行迭代,并对每个placeholder的child plan递归调用plan方法。举例文章这句SQL,递归调用plan方法,得到每个placeholder及其child plan节点(也就是 case (candidatesWithPlaceholders, (placeholder, logicalPlan))这句话的placeholder和logicalPlan两个变量)如下:
placeholder: PlanLater Aggregate [cs_sold_date_sk#24], [cast((avg(UnscaledValue(cs_ext_discount_amt#46)) / 100.0) as decimal(11,6)) AS avg(cs_ext_discount_amt)#149] logicalPlan: Aggregate [cs_sold_date_sk#24], [cast((avg(UnscaledValue(cs_ext_discount_amt#46)) / 100.0) as decimal(11,6)) AS avg(cs_ext_discount_amt)#149] +- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] +- Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) :- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] : +- Filter isnotnull(cs_sold_date_sk#24) : +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields] +- Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
placeholder: PlanLater Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] logicalPlan: Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] +- Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) :- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] : +- Filter isnotnull(cs_sold_date_sk#24) : +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields] +- Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
placeholder: PlanLater Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) logicalPlan: Join Inner, (d_date_sk#58 = cs_sold_date_sk#24) :- Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] : +- Filter isnotnull(cs_sold_date_sk#24) : +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields] +- Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
placeholder: PlanLater Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] logicalPlan: Project [cs_sold_date_sk#24, cs_ext_discount_amt#46] +- Filter isnotnull(cs_sold_date_sk#24) +- Relation[cs_sold_date_sk#24,cs_sold_time_sk#25,cs_ship_date_sk#26,cs_bill_customer_sk#27,cs_bill_cdemo_sk#28,cs_bill_hdemo_sk#29,cs_bill_addr_sk#30,cs_ship_customer_sk#31,cs_ship_cdemo_sk#32,cs_ship_hdemo_sk#33,cs_ship_addr_sk#34,cs_call_center_sk#35,cs_catalog_page_sk#36,cs_ship_mode_sk#37,cs_warehouse_sk#38,cs_item_sk#39,cs_promo_sk#40,cs_order_number#41,cs_quantity#42,cs_wholesale_cost#43,cs_list_price#44,cs_sales_price#45,cs_ext_discount_amt#46,cs_ext_sales_price#47,... 10 more fields]
placeholder: PlanLater Project [d_date_sk#58] logicalPlan: Project [d_date_sk#58] +- Filter (((isnotnull(d_date#60) && (cast(d_date#60 as string) >= 1999-02-22)) && (d_date#60 <= 10733)) && isnotnull(d_date_sk#58)) +- Relation[d_date_sk#58,d_date_id#59,d_date#60,d_month_seq#61,d_week_seq#62,d_quarter_seq#63,d_year#64,d_dow#65,d_moy#66,d_dom#67,d_qoy#68,d_fy_year#69,d_fy_quarter_seq#70,d_fy_week_seq#71,d_day_name#72,d_quarter_name#73,d_holiday#74,d_weekend#75,d_following_holiday#76,d_first_dom#77,d_last_dom#78,d_same_day_ly#79,d_same_day_lq#80,d_current_day#81,... 4 more fields]
那么可以看到,递归到最底处,就是project->filter->relation的三层节点组合,由于我实际是重写过了DataSource,这个时候会调用 DataSourceStrategy
,去读取获取数据,然后递归逐个返回根据每个planLater分割点会有对应的策略去对数据进行相应的操作。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Music Recommendation and Discovery
Òscar Celma / Springer / 2010-9-7 / USD 49.95
With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited......一起来看看 《Music Recommendation and Discovery》 这本书的介绍吧!
CSS 压缩/解压工具
在线压缩/解压 CSS 代码
UNIX 时间戳转换
UNIX 时间戳转换