python – 如何子类化大pandasDataFrame?

栏目: Python · 发布时间: 7年前

内容简介:http://stackoverflow.com/questions/22155951/how-to-subclass-pandas-dataframe
分类大pandas类似乎是一个常见的需求,但我找不到关于这个问题的参考. (看起来,大pandas的开发人员还在努力: https://github.com/pydata/pandas/issues/60

).

有一些SO线程的主题,但我希望有人在这里可以提供一个更系统的帐户,目前最好的方式,子类化pandas.DataFrame满足两个,我认为一般要求:

import numpy as np
import pandas as pd

class MyDF(pd.DataFrame):
    # how to subclass pandas DataFrame?
    pass

mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)  # <class '__main__.MyDF'>

# Requirement 1: Instances of MyDF, when calling standard methods of DataFrame,
# should produce instances of MyDF.
mydf_sub = mydf[['A','C']]
print type(mydf_sub)  # <class 'pandas.core.frame.DataFrame'>

# Requirement 2: Attributes attached to instances of MyDF, when calling standard 
# methods of DataFrame, should still attach to the output.
mydf.myattr = 1
mydf_cp1 = MyDF(mydf)
mydf_cp2 = mydf.copy()
print hasattr(mydf_cp1, 'myattr')  # False
print hasattr(mydf_cp2, 'myattr')  # False

对于分类大pandasSeries有什么显着的差异?谢谢.

对于要求1,只需定义_constructor:

import pandas as pd
import numpy as np

class MyDF(pd.DataFrame):
    @property
    def _constructor(self):
        return MyDF


mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)

mydf_sub = mydf[['A','C']]
print type(mydf_sub)

我认为需求2没有简单的解决方案,我想你需要定义__init__,复制或者在_constructor中做一些事情,例如:

import pandas as pd
import numpy as np

class MyDF(pd.DataFrame):
    _attributes_ = "myattr1,myattr2"

    def __init__(self, *args, **kw):
        super(MyDF, self).__init__(*args, **kw)
        if len(args) == 1 and isinstance(args[0], MyDF):
            args[0]._copy_attrs(self)

    def _copy_attrs(self, df):
        for attr in self._attributes_.split(","):
            df.__dict__[attr] = getattr(self, attr, None)

    @property
    def _constructor(self):
        def f(*args, **kw):
            df = MyDF(*args, **kw)
            self._copy_attrs(df)
            return df
        return f

mydf = MyDF(np.random.randn(3,4), columns=['A','B','C','D'])
print type(mydf)

mydf_sub = mydf[['A','C']]
print type(mydf_sub)

mydf.myattr1 = 1
mydf_cp1 = MyDF(mydf)
mydf_cp2 = mydf.copy()
print mydf_cp1.myattr1, mydf_cp2.myattr1

http://stackoverflow.com/questions/22155951/how-to-subclass-pandas-dataframe


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Scalability Rules

Scalability Rules

Martin L. Abbott、Michael T. Fisher / Addison-Wesley Professional / 2011-5-15 / USD 29.99

"Once again, Abbott and Fisher provide a book that I'll be giving to our engineers. It's an essential read for anyone dealing with scaling an online business." --Chris Lalonde, VP, Technical Operatio......一起来看看 《Scalability Rules》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具