内容简介:数据观世界深度学习是目前人工智能领域的核心技术之一,为了更方便地开发基于深度学习的方法以及推进深度学习技术的进步,多个世界顶级的技术团队为深度学习开发了框架,其中大部分都是开源的并且提供了针对Python语言的开发包,无论是对于Python还是深度学习这都是一件极好的事情,我们总结了11种开源框架的Python包,在这里给大家做以下简单地介绍。
数据观世界
深度学习是目前人工智能领域的核心技术之一,为了更方便地开发基于深度学习的方法以及推进深度学习技术的进步,多个世界顶级的技术团队为深度学习开发了框架,其中大部分都是开源的并且提供了针对Python语言的开发包,无论是对于Python还是深度学习这都是一件极好的事情,我们总结了11种开源框架的Python包,在这里给大家做以下简单地介绍。
1. TensorFlow Python
TensorFlow是一个用于数值计算的开源库,它基于数据流图,也即是Flow之意所在。TensorFlow是由谷歌大脑团队和谷歌机器智能研究组织共同开发,它是开源的,可供全球公众使用。并且,它在分布式计算方面也具有一些优势。
我们可以使用pip来进行安装:
pip install tensorflow
2. Keras Python
Keras是一个极简的、模块化的神经网络库,它使用Theano或TensorFlow作为后端,能够帮助开发者快速便捷地实现想法和取得实验结果。Keras自带与优化器,归一化和激活层相关的算法。它还涉及卷积神经网络,并允许您构建基于序列和基于图形的网络。唯一的缺点就是它不支持用于并行训练网络的多GPU环境。
我们可以使用pip来进行安装:
pip install keras
3. Apache mxnet
mxnet为C++,Python,R,JavaScript等语言提供了大量的接口。它在分布式计算方面表现很好,并且允许我们在CPU或者GPU机器上训练网络。唯一的缺点是我们需要更多代码来运行实验。
我们可以使用pip来进行安装:
pip install mxnet
4. Caffe
Caffe是一个快速且模块化的深度学习框架。 它不是一个库,但它提供了Python的接口。Caffe每天可以在K40 GPU上处理近6000万张图像。但是,在它上面以编程方式调节超参数并不容易。
5. Theano Python
如果没有NumPy,我们就不能拥有SciPy,scikit-learn和scikit-image。同样,Theano也是许多其它框架和方法的基础,它是一个可以让您定义、优化和评估涉及多维数组数学表达式的库。它与NumPy紧密集成,并且支持使用GPU,Theano可以称为科学计算的基石。
使用Python pip安装它:
pip install theano
6. Microsoft Cognitive Toolkit
Microsoft Cognitive Toolkit是一个统一的深度学习 工具 包。它描述了在计算步骤中使用有向图的神经网络。
你可以使用Python pip安装cntk:
pip install cntk
7. PyTorch
PyTorch是Python中动态的张量神经网络。 它是开源的,并且可以使用强大的GPU加速,我们可以将它用于自然语言处理等应用程序。 你可以参考下面的链接根据您不同的环境和方式来安装PyTorch:
https://pytorch.org/#pip-install-pytorch
8. Eclipse DeepLearning4J
DeepLearning4J是Eclipse的深度学习编程库。它是为 Java 和JVM语言编写的,它也是一个能为深度学习算法提供良好支持的计算框架。
9. Lasagne
Lasagne是一个轻量级的Python库,可以帮助我们更轻松高效地在Theano中构建和训练神经网络。
你可以使用Python pip安装它:
pip install lasagna
10. nolearn
nolearn将Lasagna包装成对用户更加友好的API。它拥有的所有代码都与scikit-learn兼容。 我们可以将它用于Deep Belief Networks(DBN)等应用程序。
你可以使用Python pip安装它:
pip install nolearn
11. PyLearn2
PyLearn2是一个Python机器学习库,其中大部分功能都建立在Theano之上,我们可以使用数学表达式编写PyLearn2插件,Theano为我们对这些功能进行优化并将它们编译为我们想要的后端。
以上便是使用Python库和框架进行深度学习的全部内容,文中的11个库和框架,可以帮助您轻松地开始进行深度学习实验或项目。每个深度学习Python库和框架都有其自身的优点和局限性,请在评论中告诉我们您在使用Python库和框架进行深度学习方面的经验。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 深度解析Python深度学习框架的对比
- 深度学习框架的前世今生
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
- 三种 JavaScript 深度学习框架介绍
- 深度:从零编写一个微前端框架
- 深度:从零编写一个微前端框架
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
App研发录:架构设计、Crash分析和竞品技术分析
包建强 / 机械工业出版社 / 2015-10-21 / CNY 59.00
本书是作者多年App开发的经验总结,从App架构的角度,重点总结了Android应用开发中常见的实用技巧和疑难问题解决方法,为打造高质量App提供有价值的实践指导,迅速提升应用开发能力和解决疑难问题的能力。本书涉及的问题有:Android基础建设、网络底层框架设计、缓存、网络流量优化、制定编程规范、模块化拆分、Crash异常的捕获与分析、持续集成、代码混淆、App竞品技术分析、项目管理和团队建设等......一起来看看 《App研发录:架构设计、Crash分析和竞品技术分析》 这本书的介绍吧!