【火炉炼AI】机器学习034-NLP对文本进行分词

栏目: 数据库 · 发布时间: 6年前

内容简介:(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, NLTK 3.3)文本分块是将一大段文本分割成几段小文本,其目的是比如想获取一段文本中的一小部分,或分割得到固定单词数目的小部分等,经常用于非常大的文本。注意文本分块和分词不一样,分词的目的是把一段文本分割成单词,而文本分块的目的是把一大段文本分割成多个小段文本。在不用的应用中,可能需要按照不同的规则对大段文本进行分块,此处我们需要得到单词数相等的块

(本文所使用的 Python 库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, NLTK 3.3)

文本分块是将一大段文本分割成几段小文本,其目的是比如想获取一段文本中的一小部分,或分割得到固定单词数目的小部分等,经常用于非常大的文本。注意文本分块和分词不一样,分词的目的是把一段文本分割成单词,而文本分块的目的是把一大段文本分割成多个小段文本。

1. NLP文本分块

在不用的应用中,可能需要按照不同的规则对大段文本进行分块,此处我们需要得到单词数相等的块,故而可以编写函数来实现这种规则的分块。代码如下。

from nltk.tokenize import word_tokenize
def split(dataset,words_num):
    '''
    将dataset这一整段文本分割成N个小块,
    使得每个小块中含有单词的数目等于words_num'''
    words=dataset.split(' ') # 此处用空格来区分单词是否合适?
    # words=word_tokenize(dataset) # 用分词器来分词是否更合适一些?
    
    rows=int(np.ceil(len(words)/words_num)) # 即行数
    result=[] # 预计里面装的元素是rows行words_num列,最后一行可能少于words_num,故不能用np.array

    # words是list,可以用切片的方式获取
    for row in range(rows):
        result.append(words[row*words_num:(row+1)*words_num])
    return result

复制代码

然后用简·奥斯丁的《爱玛》中的文本作为数据集,由于这个数据集太大,长度有192427,故而我们此处只获取前面的1000个单词做测试。

# 测试一下
# 数据集暂时用简·奥斯丁的《爱玛》中的文本
dataset=nltk.corpus.gutenberg.words('austen-emma.txt')
print(len(dataset)) # 192427 代表读入正常
result=split(" ".join(dataset[:1000]), 30) # 只取前面的1000个单词,每30个单词分一个块,一共有34个块
print(len(result))
print(result[0])
print(len(result[0]))
print(result[-1])
print(len(result[-1]))
复制代码

--------------------输---------出--------------------------------

192427 34 ['[', 'Emma', 'by', 'Jane', 'Austen', '1816', ']', 'VOLUME', 'I', 'CHAPTER', 'I', 'Emma', 'Woodhouse', ',', 'handsome', ',', 'clever', ',', 'and', 'rich', ',', 'with', 'a', 'comfortable', 'home', 'and', 'happy', 'disposition', ',', 'seemed'] 30 ['its', 'separate', 'lawn', ',', 'and', 'shrubberies', ',', 'and', 'name', ','] 10

---------------------------完-------------------------------------

可以看出split之后的分成了34块,第一个块长度是30,而最后一块的长度是10,并且split函数准确的将文本进行了分块。

########################小**********结###############################

1,本例中文本分块貌似没有用到NLTK模块中的任何函数,只用python字符串处理函数就可以。但在其他应用场景中,可能会需要更复杂的函数来完成特定的分块功能。

2,本例中使用空格来区分一个单词,这种分词方式并不一定准确,可以使用前面讲到的word_tokenize函数来分词,可能更准确一些。

3,如果是中文的分块,可以先用jieba对文本进行分词,然后在获取特定的单词数来进行文本分块,仿照上面的split函数很容易扩展到中文方面,此处省略。

#################################################################

注:本部分代码已经全部上传到( 我的github )上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译


以上所述就是小编给大家介绍的《【火炉炼AI】机器学习034-NLP对文本进行分词》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

智能Web算法(第2版)

智能Web算法(第2版)

【英】Douglas G. McIlwraith(道格拉斯 G. 麦基尔雷思)、【美】Haralambos Marmanis(哈若拉玛 玛若曼尼斯)、【美】Dmitry Babenko(德米特里•巴邦科) / 达观数据、陈运文 等 / 电子工业出版社 / 2017-7 / 69.00

机器学习一直是人工智能研究领域的重要方向,而在大数据时代,来自Web 的数据采集、挖掘、应用技术又越来越受到瞩目,并创造着巨大的价值。本书是有关Web数据挖掘和机器学习技术的一本知名的著作,第2 版进一步加入了本领域最新的研究内容和应用案例,介绍了统计学、结构建模、推荐系统、数据分类、点击预测、深度学习、效果评估、数据采集等众多方面的内容。《智能Web算法(第2版)》内容翔实、案例生动,有很高的阅......一起来看看 《智能Web算法(第2版)》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换