机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习

栏目: 数据库 · 发布时间: 6年前

内容简介:机器学习和深度学习有什么区别?让我们从本文中寻找答案。本文中,我们将深度学习与机器学习作比较。我们将逐一了解他们。我们还会讨论他们在各个方面的不同点。除了深度学习和机器学习的比较,我们还将研究它们未来的趋势。1. 什么是机器学习?

机器学习和深度学习有什么区别?让我们从本文中寻找答案。

目标

本文中,我们将深度学习与机器学习作比较。我们将逐一了解他们。我们还会讨论他们在各个方面的不同点。除了深度学习和机器学习的比较,我们还将研究它们未来的趋势。

机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习

对比介绍深度学习和机器学习

1. 什么是机器学习?

通常,为了实现人工智能,我们会使用机器学习。我们有几种用于机器学习的算法。例如:

  • Find-S
  • 决策树(Decision trees)
  • 随机森林(Random forests)
  • 人工神经网络(Artificial Neural Networks)

通常,有3类学习算法:

  • 监督机器学习算法进行预测。此外,该算法在分配给数据点的值标签中搜索模式。
  • 无监督机器学习算法:没有标签与数据关联。并且,这些 ML 算法将数据组成簇。此外,他需要描述其结构,并使复杂的数据看起来简单且能有条理的分析。
  • 增强机器学习算法:我们使用这些算法选择动作。并且,我们能看到它基于每个数据点。一段时间后,算法改变策略来更好地学习。

2.什么是深度学习?

机器学习只关注解决现实问题。它还需要人工智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。ML工具和技术是两个主要的仅关注深度学习的窄子集。我们需要应用它来解决任何需要思考的问题 —— 人类的或人为的。任何深度神经网络都将包含以下三层:

  • 输入层
  • 隐藏层
  • 输出层

我们可以说深度学习是机器学习领域的最新术语。这是实现机器学习的一种方式。

3. 深度学习vs机器学习

我们用机器算法来解析数据,学习数据,并从中做出理智的判定。根本上讲,深度学习用于创建可自我学习和可理智判定的人工“神经网络”。我们可以说深度学习是机器学习的子领域。

4. 机器学习与深度学习对比

a.数据依赖

性能是区别二者的最主要之处。当数据量小时,深度学习算法表现不佳。这就是DL算法需要大量的数据才能完美理解的唯一原因。

机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习

我们可以看到,人工创立的该场景之下算法占据上风。上图总结了该情况。

b. 硬件依赖

通常,深度学习依赖于高端设备,而传统学习依赖于低端设备。因此,深度学习要求包含 GPU。这是它工作中不可或缺的一部分。它们还需要进行大量的矩阵乘法运算。

c. 功能工程化

这是一个通用的过程。在此,领域知识被用于创建特征提取器,以降低数据的复杂性,并使模式对学习算法的工作原理上更可见,虽然处理起来非常困难。 因此,这是耗时并需要专业知识的。

机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习

d. 解决问题的方法

通常,我们使用传统算法来解决问题。但它需要将问题分解为不同的部分以单独解决它们。要获得结果,请将它们全部合并起来。

例如:

让我们假定你有一个多对象检测的任务。在此任务中,我们必须确定对象是什么以及它在图像中的位置。在机器学习方法中,我们必须将问题分为两个步骤:

  • 对象检测
  • 对象识别

首先,我们使用抓取算法遍历图像并找到所有可能的对象。然后,在所有已识别的对象中,你将使用诸如 SVM 和 HOG 这样的对象识别算法来识别相关对象。

机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习

e.执行时间

通常,与机器学习相比,深度学习需要更多时间进行训练。主要原因是深度学习算法中有太多参数。机器学习需要进行训练的时间较少,从几秒钟到几个小时范围内。

f.可解释性

我们将可解释性作为比较两种学习技术的因素。尽管如此,深度学习在工业应用之前仍然被考虑再三。

机器学习和深度学习主要被应用在何处?

a. 计算机视觉:我们将其用于像车牌识别和面部识别等应用。

b. 信息检索:我们将 ML 和 DL 用于像囊括文本检索及图像检索的搜索引擎等应用。

c. 市场营销:我们在自动电子邮件营销及客户群识别上使用这些学习技术。

d. 医疗诊断:它在医疗领域也有广泛的应用,像癌症识别及异常检测等应用。

  • 自然语言处理
  • 针对类似情感分析、照片标签生成、在线广告等应用

此处可了解更多关于机器学习类应用。

未来趋势

  • 如今,机器学习和数据科学已经成为一种趋势。在企业中,对这两种产品的需求都在迅速增长。对于那些想要在自己的业务中融入机器学习的公司,两者被迫切地需求着。
  • 深度学习被发现和证明有最好的技术表现力。并且,深度学习正在不断给我们带来惊喜并将在不久的将来继续这样做。
  • 近年来,研究人员不断探索机器学习和深度学习。过去,研究人员仅限于学术界。但是,如今,在工业和学术界中ML和DL都有自己的一席之地。

结论

我们已经研究讨论了深度学习和机器学习,并对两者进行了比较。为了更好地表达和理解,我们还研究了影像。如果你有任何问题,请在评论区提出。


以上所述就是小编给大家介绍的《机器学习 VS 深度学习到底有啥区别,为什么更多人选择机器学习》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Purely Functional Data Structures

Purely Functional Data Structures

Chris Okasaki / Cambridge University Press / 1999-6-13 / USD 49.99

Most books on data structures assume an imperative language such as C or C++. However, data structures for these languages do not always translate well to functional languages such as Standard ML, Ha......一起来看看 《Purely Functional Data Structures》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

随机密码生成器
随机密码生成器

多种字符组合密码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具