内容简介:在短时间内分布式存储+分布式计算Hadoop是目前大数据常用的,一个能够对大量数据进行分布式处理的软件框架。
什么是大数据
在短时间内 快速产生 的 海量 的 各种各样 的 有价值 的数据
大数据的核心技术
分布式存储+分布式计算
Hadoop是目前大数据常用的,一个能够对大量数据进行分布式处理的软件框架。
Hadoop框架最核心的设计是 HDFS 和 MapReduce。
HDFS为海量的数据提供了存储,而 MapReduce 则为海量的数据提供了计算
HDFS,全称分布式文件系统(Hadoop Distributed File System),其存储思想简单粗暴来讲就是一台服务器存不下,那么我就用N台来存。
当然事实上不可能这么简单,现在我们假设我们用100台服务器存了10PB的资源,那么我们现在需要拿到资源A,一台一台的去找显然是愚笨不堪的,于是聪明的你,在存储数据时就默默的记下了一张表,表上记录着哪一台服务器上存储了哪些数据,这时我们就可以通过查这表来找到资源A所在的位置,这当然比上面一台一台找方便的多,但这张表其实也是不小的(假设可能有100页),正所谓懒人推动科技,我们希望能直接知道资源A的地址而只提供A的相关描述,而恰巧我们是程序员,于是我们可以编写一个搜索程序,对外留出搜索接口,将查表的任务交给这个程序去做。我们将这个程序部署在一台新的服务器上,那么这就形成了HDFS集群的基本框架。那张表中的记录叫做元数据(描述数据的数据),搜索程序所在的服务器叫做NameNode(NameNode只是个别名,本质就是台服务器, 角色在集群中的映射是通过进程来表现 因为该服务器启动时会产生一个名为NameNode的进程,所以我们称该服务器节点为NameNode节点),同理存储源数据(真实数据)的100台服务器就叫做DataNode。
作文一个文件存储系统,最为重要的就是文件的读和写,在说到文件读写前我们先来了解一下同样重要的HDFS的文件备份机制
文件备份
现在假设数据已经存储下来,但我们难保什么时候数据会损坏丢失或者某个DataNode节点会挂掉,所以实际中我们必须对数据进行备份
HDFS默认备份数为2,即一个数据存3份,当然你可以再多备几份,这里遵循备份数+1<=DataNode节点数
HDFS备份机制
第一份存在一台负载不高的节点上(由NameNode进行选择,如果数据是集群内提交,则直接存在提交数据的本节点)
第二份存在与第一份不同机架的随机节点上
第三份存在与第二份同机架的不同节点上
- 现在客户端要上传一个大文件,首先他需要计算出该文件的block数(HDFS中文件是以block块的形式存储的,一个Block块=128M)
- 然后客户端向NameNode发送请求,告知其文件的信息,属主,权限,上传时间和Block数。NameNode就会记录这些数据,并准备好相应的blockID
- 客户端拿出一个block,向NameNode发送请求
- NameNode返回给客户端一个blockId和存储位置
-
客户端给block贴上blockId然后根据地址将其存入DataNode中
这里首先三个地址(备份机制)的DateNode节点形成pipeline管道
然后客户端将block切割成一个个packet(64K)输入管道(这样做是为了并行存储,提高效率) - 存储完毕后,DataNode向NameNode汇报情况
- 重复步骤3直到所有block存储完毕
- 文件读就简单了,客户端向NameNode发送请求,说我需要资源A
- 于是NameNode便去找资源A的位置然后发给客户端
-
客户端根据地址去DataNode读取文件就可以了
我们这里再想一下,我们去读的时候若是这个DataNode节点挂掉了,那么我们就无法读取数据,而NameNode却不知道这边情况,只是给我们提供无效的地址,这种情况显然是不允许的,于是HDFS中规定DataNode需要向NameNode发送心跳,也就是定时汇报工作,告诉NameNode我还活着,一切OK。如果一定时间内NameNode没有接收到某个DataNode的心跳,那么就会进行处理(备份该DataNode上存储的资源)
SecondaryNameNode
我们这里再想一下,DataNode会挂掉,那么NameNode也挂掉该怎么办呢?
第一反应可能是给NameNode也备份一下,想法是没错的。这里提一下,NameNode管理的元数据是在内存中的,那么我们要怎样备份呢?这里HDFS做的很巧妙,他引入一台新的服务器节点SecondaryNameNode用来将NameNode的元数据持久化到磁盘中,这里我们看图
图中使用edits文件存储对元数据所做的操作,fsimage文件存储元数据的状态信息,
在3600秒或edits文件大小超过64M时,SecondaryNameNode就会copyNameNode中edits和fsimage文件然后进行重演,重演后将fsiamge重命名为fsiamge.ckpt推回到NameNode中,在这个期间NameNode对元数据所做的操作将存储在edits.new文件中,在得到SecondaryNameNode推回的fsimage.ckpt时将fsimage.ckpt重命名为fsimage,edies.new重命名为edit。这样就在SecondaryNamenode中完成了对Namenode的持久化.
顺便一提,block的位置信息是不会持久化的,它依靠于DataNode的心跳获得
安全模式
安全模式是指集群启动之初,NameNode启动时的状态
此时首先加载fsimage到内存中
如果edits文件不为空,则NameNode来进行合并(这是NameNode唯一一次进行合并)
检查DataNode的健康状态,如果有DataNode挂掉,就做备份处理
思维导图
以上所述就是小编给大家介绍的《大数据之一 分布式存储》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 分布式存储ceph对象存储配置zone同步
- 未来的互联网存储:5 大分布式存储平台深入比较(中)
- GlusterFS分布式存储搭建双机复制卷结合Keepalived实现存储高可用
- 探索分布式存储应用
- 分布式存储架构设计
- 分布式日志存储(11.5)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
C++标准程序库
[德] Nicolai M. Josuttis / 侯捷、孟岩 / 华中科技大学出版社 / 2002-9 / 108.00元
这本包含最新资料的完整书籍,反映出被ANSI/ISO C++语言标准规格书纳入的C++标准程序库的最新组成。更明确地说,这本书将焦点放在标准模板库身上,检验其中的容器、迭代器、仿函数和算法。读者还可以找到特殊容、字串、数值类别、国际化议题、IOStream。每一个元素都有深刻的呈现,包括其介绍、设计、运用实例、细部解说、陷阱、意想不到的危险,以及相关类别和函数的精确樯记式和定义式。一起来看看 《C++标准程序库》 这本书的介绍吧!