ES学习笔记-elasticsearch-hadoop导入hive数据到es的实现探究

栏目: 服务器 · 发布时间: 6年前

内容简介:各个业务数据“汇总到hive, 经过ETL处理后, 导出到数据库“是大数据产品的典型业务流程。这其中,sqoop(离线)和kafka(实时)几乎是数据总线的标配了。但是有些业务也有不标准的,比如hive数据导入到ES. hive数据导入到ES, 官方组件是elasticsearch-hadoop. 其用法在前面的博客中已有介绍。 那么其实现原理是怎样的呢? 或者说, es-hadoop这家伙到底是怎么把hive表的数据弄到es中去的? 为了弄清楚这个问题, 我们首先需要有一个本地的源码环境。s1: 下载e

各个业务数据“汇总到hive, 经过ETL处理后, 导出到数据库“是大数据产品的典型业务流程。这其中,sqoop(离线)和kafka(实时)几乎是数据总线的标配了。

但是有些业务也有不标准的,比如hive数据导入到ES. hive数据导入到ES, 官方组件是elasticsearch-hadoop. 其用法在前面的博客中已有介绍。 那么其实现原理是怎样的呢? 或者说, es-hadoop这家伙到底是怎么把hive表的数据弄到es中去的? 为了弄清楚这个问题, 我们首先需要有一个本地的源码环境。

s1: 下载elasticsearch-hadoop源码。

git clone https://github.com/elastic/elasticsearch-hadoop.git

s2: 编译源码。直接编译master即可。

gradlew distZip

s3: 编译成功后,导入到intellij。 这里注意导入build.gradle文件,就像maven项目导入pom文件一样。

s4: 在intellij中编译一次项目。

s5: 在本地启动一个es, 默认的端口即可。

s6: 运行测试用例 AbstractHiveSaveTest.testBasicSave() 。 直接运行是会报错的, 需要略微修改一下代码,添加一个类的属性:

@Cla***ule
    public static ExternalResource hive = HiveSuite.hive;

如果是在windows环境下,需要新建package org.apache.hadoop.io.nativeio , 然后在该package下建立 NativeIO.java 类。 修改代码如下:

// old
    public static boolean access(String path, Acce***ight desiredAccess)
        throws IOException {
      return access0(path, desiredAccess.acce***ight());
    }

// new 
    public static boolean access(String path, Acce***ight desiredAccess)
        throws IOException {
      return true;
    }

这样就运行起来了一个本地的hive到es的代码。可以debug,了解详细流程了。

在elasticsearch-hadoop这个比较庞大的项目中,修改代码也比较麻烦,因此可以单独建立一个项目hive-shgy, 然后改造这个测试类, 跑通 testBasicSave()

由于对gradle不熟悉, 还是建立maven项目, 项目的依赖如下:

<repositories>
        <repository>
            <id>spring-libs</id>
            <url>http://repo.spring.io/libs-milestone/</url>
        </repository>
    </repositories>
    <dependencies>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-1.2-api</artifactId>
            <version>2.6.2</version>
            <scope>test</scope>
        </dependency>

        <dependency>     <!-- 桥接:告诉Slf4j使用Log4j2 -->
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>2.6.2</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>com.lmax</groupId>
            <artifactId>disruptor</artifactId>
            <version>3.3.6</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-cli</artifactId>
            <version>1.2.1</version>
            <scope>provided</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.2.0</version>
            <scope>provided</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.logging.log4j</groupId>
                    <artifactId>log4j-slf4j-impl</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch-hadoop</artifactId>
            <version>6.3.0</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

这里用到了log4j2, 所以日志类放在前面。

接下来迁移测试代码。迁移的原则是 若无必要,不新增类。 如果只用到了类的一个方法,那么只迁移一个方法。 这里的测试代码迁移,其实就是围绕 HiveEmbeddedServer2 来构建的。个人感觉这里比较巧妙的是,通过 HiveEmbeddedServer2 启动了一个嵌入式的hive实例。能够执行hive sql, 而且是在一个jvm中,对于研究hive的实现原理来说,太酷了。

基础的环境搭建好后,就可以研究elasticsearch-hadoop的源码了, 先看源码的结构:

elasticsearch-hadoop/hive/src/main/java/org/elasticsearch/hadoop/hive$ tree .
.
├── EsHiveInputFormat.java
├── EsHiveOutputFormat.java
├── EsSerDe.java
├── EsStorageHandler.java
├── HiveBytesArrayWritable.java
├── HiveBytesConverter.java
├── HiveConstants.java
├── HiveFieldExtractor.java
├── HiveType.java
├── HiveUtils.java
├── HiveValueReader.java
├── HiveValueWriter.java
├── HiveWritableValueWriter.java
└── package-info.java

0 directories, 14 files

这里简要描述一下elasticsearch-hadoop将hive数据同步到es的原理, Hive开放了StorageHandler的接口。通过StoreageHandler, 可以使用 SQL 将数据写入到es,同时也可以使用SQL读取ES中的数据。 所以, 整个es-hive, 其入口类为EsStorageHandler, 这就是整个功能的框架。 了解了EsStorageHandler后,接下来很重要的一个类就是EsSerDe, 是序列化反序列化的功能组件。它是一个桥梁,通过它实现ES数据类型和Hive数据类型的转换。 核心类就是这两个了。

了解了代码的原理及结构,就可以自己仿照实现hive数据同步到mongo, hive数据同步到 redis 等其他的功能了。 这样做的好处是业务无关, 一次开发,多次使用。方便管理维护。

最后总结一下,本文没有直接给出答案, 而是记录了寻找答案的过程。 通过这个过程,学会将hive数据同步到其他NoSQL中,这个实践比理解源码更重要。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

不止情感设计

不止情感设计

陈华 / 电子工业出版社 / 2015-5-21 / 59.00

本书着眼于“设计&心理”两个主要的维度,围绕“创新式思维2.0”(共情—移情—定义—构思—建模—测试)的模式,分析如何“理解一款好的产品设计”、“如何了解用户需求”、“如何从需求来定义产品”的几个步骤,由浅入深地介绍设计师通过洞察和理解用户内在需求来指导产品创新和设计的理念。一起来看看 《不止情感设计》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具