【火炉炼AI】机器学习030-KNN分类器模型的构建

栏目: 数据库 · 发布时间: 6年前

内容简介:(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )KNN(K-nearest neighbors)是用K个最近邻的训练数据集来寻找未知对象分类的一种算法。其基本的核心思想在我的上一篇文章中介绍过了。此处我的数据集准备包括数据加载和数据可视化,这部分比较简单,以前文章中使用了多次,直接看数据分布图。

(本文所使用的 Python 库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

KNN(K-nearest neighbors)是用K个最近邻的训练数据集来寻找未知对象分类的一种算法。其基本的核心思想在我的上一篇文章中介绍过了。

1. 准备数据集

此处我的数据集准备包括数据加载和数据可视化,这部分比较简单,以前文章中使用了多次,直接看数据分布图。

【火炉炼AI】机器学习030-KNN分类器模型的构建

2. 构建KNN分类器模型

2.1 KNN分类器模型的构建和训练

构建KNN分类器模型的方法和SVM,RandomForest的方法类似,代码如下:

# 构建KNN分类模型
from sklearn.neighbors import KNeighborsClassifier
K=10 # 暂定10个最近样本
KNN=KNeighborsClassifier(K,weights='distance')
KNN.fit(dataset_X,dataset_y) # 使用该数据集训练模型

复制代码

上面使用数据集训练了这个KNN模型,但是我们怎么知道该模型的训练效果了?下面绘制了分类模型在训练数据集上的分类效果,从边界上来看,该分类器比较清晰的将这个数据集区分开来。

【火炉炼AI】机器学习030-KNN分类器模型的构建

2.1 用训练好的KNN分类器预测新样本

直接上代码:

# 用训练好的KNN模型预测新样本
new_sample=np.array([[4.5,3.6]])
predicted=KNN.predict(new_sample)[0]
print("KNN predicted:{}".format(predicted))

复制代码

得到的结果是2,表示该新样本属于第2类。

下面我们将这个新样本绘制到图中,看看它在图中的位置。

为了绘制新样本和其周围的K个样本的位置,我修改了上面的plot_classifier函数,如下为代码:

# 为了查看新样本在原数据集中的位置,也为了查看新样本周围最近的K个样本位置,
# 我修改了上面的plot_classifier函数,如下所示:

def plot_classifier2(KNN_classifier, X, y,new_sample,K):
    x_min, x_max = min(X[:, 0]) - 1.0, max(X[:, 0]) + 1.0 # 计算图中坐标的范围
    y_min, y_max = min(X[:, 1]) - 1.0, max(X[:, 1]) + 1.0
    step_size = 0.01 # 设置step size
    x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size),
                                     np.arange(y_min, y_max, step_size))
    # 构建网格数据
    mesh_output = KNN_classifier.predict(np.c_[x_values.ravel(), y_values.ravel()])
    mesh_output = mesh_output.reshape(x_values.shape) 
    plt.figure()
    plt.pcolormesh(x_values, y_values, mesh_output, cmap=plt.cm.gray)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=80, edgecolors='black', 
                linewidth=1, cmap=plt.cm.Paired)
    # 绘制新样本所在的位置
    plt.scatter(new_sample[:,0],new_sample[:,1],marker='*',color='red')
    # 绘制新样本周围最近的K个样本,只适用于KNN
    # Extract k nearest neighbors
    dist, indices = KNN_classifier.kneighbors(new_sample)
    plt.scatter(dataset_X[indices][0][:][:,0],dataset_X[indices][0][:][:,1],
                marker='x',s=80,color='r')
    # specify the boundaries of the figure
    plt.xlim(x_values.min(), x_values.max())
    plt.ylim(y_values.min(), y_values.max())

    # specify the ticks on the X and Y axes
    plt.xticks((np.arange(int(min(X[:, 0])), int(max(X[:, 0])), 1.0)))
    plt.yticks((np.arange(int(min(X[:, 1])), int(max(X[:, 1])), 1.0)))

    plt.show()

复制代码

直接代入运行后得到结果图:

【火炉炼AI】机器学习030-KNN分类器模型的构建

从图中可以看出,红色的五角星是我们的新样本,而红色的叉号表示与其最近的K个邻居。可以看出,这些邻居中的大多数都位于第二个类别中,故而新样本也被划分到第二个类比,通过predict得到的结果也是2。

########################小**********结###############################

1,构建和训练KNN分类器非常简单,只需要用sklearn导入KNNClassifier,然后用fit()函数即可。

2,KNN分类器存储了所有可用的训练集数据点,在新的数据点需要预测时,首先计算该新数据点和内部存储的所有数据点的相似度(也就是距离),并对该距离排序,获取距离最近的K个数据点,然后判断这K个数据点的大多数属于哪一个类别,就认为该新数据点属于哪一个类别。这也解释了为什么K通常取奇数,要是偶数,得到两个类别的数据点个数都相等,那就尴尬了。

3,KNN分类器的难点是寻找最合适的K值,这个需要用交叉验证来反复尝试,采用具有最大准确率或召回率的K作为最佳K值,这个过程也可以采用GridSearch或RandomSearch来完成。

#################################################################

注:本部分代码已经全部上传到( 我的github )上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算的本质

计算的本质

[英] Tom Stuart / 张伟 / 人民邮电出版社 / 2014-11 / 69.00元

《计算的本质:深入剖析程序和计算机》借助Ruby全面介绍计算理论和编程语言的设计。作者注重实用性,不仅尽量抛开复杂难懂的数学符号,而且特别选用简单快捷的编程语言Ruby,在读者熟知的背景知识下,以明晰的可工作代码阐明形式语义、自动机理论,以及通过lambda演算进行函数式编程等计算机科学知识,并为让其自行探索做足准备。 本书适合计算机科学系学生,以及熟知现代编程语言,想要系统地学习计算机科学......一起来看看 《计算的本质》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器