【go共识算法】-Raft

栏目: 后端 · 发布时间: 6年前

内容简介:一个 Raft 集群包含若干个服务器节点;通常是 5 个,这允许整个系统容忍 2 个节点的失效,每个节点处于以下三种状态之一:Raft通过选出一个leader来简化日志副本的管理,例如,日志项(log entry)只允许从leader流向follower。基于leader的方法,Raft算法可以分解成三个子问题:

介绍

Raft 状态

一个 Raft 集群包含若干个服务器节点;通常是 5 个,这允许整个系统容忍 2 个节点的失效,每个节点处于以下三种状态之一:

  • follower :所有结点都以 follower 的状态开始。如果没收到 leader消息则会变成 candidate状态。
  • candidate:会向其他结点“拉选票”,如果得到大部分的票则成为leader。这个过程就叫做Leader选举(Leader Election)。
  • leader:所有对系统的修改都会先经过leader。

Raft 一致性算法

Raft通过选出一个leader来简化日志副本的管理,例如,日志项(log entry)只允许从leader流向follower。

基于leader的方法,Raft算法可以分解成三个子问题:

Leader election
Log replication
Safety

Leader election (领导选举)

Raft 使用一种心跳机制来触发领导人选举。当服务器程序启动时,他们都是 follower(跟随者) 身份。如果一个跟随者在一段时间里没有接收到任何消息,也就是选举超时,然后他就会认为系统中没有可用的领导者然后开始进行选举以选出新的领导者。要开始一次选举过程,follower 会给当前term加1并且转换成candidate状态。

然后他会并行的向集群中的其他服务器节点发送请求投票的 RPCs 来给自己投票。候选人的状态维持直到发生以下任何一个条件发生的时候.

  • 他自己赢得了这次的选举

    • 如果这个节点赢得了半数以上的vote就会成为leader,每个节点会按照first-come-first-served的原则进行投票,并且一个term中只能投给一个节点, 这样就保证了一个term最多有一个节点赢得半数以上的vote。
    • 当一个节点赢得选举, 他会成为leader, 并且给所有节点发送这个信息, 这样所有节点都会回退成follower。
  • 其他的服务器成为领导者,如果在等待选举期间,candidate接收到其他server要成为leader的RPC,分两种情况处理:

    • 如果在等待选举期间,candidate接收到其他server要成为leader的RPC,分两种情况处理:
    • 如果leader的term小于自身的term,那么会拒绝该 leader,并继续保持candidate 状态
  • 一段时间之后没有任何一个获胜的人

    • 有可能,很多follower同时变成candidate,导致没有candidate能获得大多数的选举,从而导致无法选出主。当这个情况发生时,每个candidate会超时,然后重新发增加term,发起新一轮选举RPC。需要注意的是,如果没有特别处理,可能出导致无限地重复选主的情况。
    • Raft采用随机定时器的方法来避免上述情况,每个candidate选择一个时间间隔内的随机值,例如150-300ms,采用这种机制,一般只有一个server会进入candidate状态,然后获得大多数server的选举,最后成为主。每个candidate在收到leader的心跳信息后会重启定时器,从而避免在leader正常工作时,会发生选举的情况。

Log replication (日志复制)

当选出 leader 后,它会开始接受客户端请求,每个请求会带有一个指令,可以被回放到状态机中。leader 把指令追加成一个log entry,然后通过AppendEntries RPC并行的发送给其他的server,当改entry被多数派server复制后,leader 会把该entry回放到状态机中,然后把结果返回给客户端。

当 follower 宕机或者运行较慢时,leader 会无限地重发AppendEntries给这些follower,直到所有的follower都复制了该log entry。

raft的log replication保证以下性质(Log Matching Property):

  • 如果两个log entry有相同的index和term,那么它们存储相同的指令
  • 如果两个log entry在两份不同的日志中,并且有相同的index和term,那么它们之前的log entry是完全相同的

其中特性一通过以下保证:

  • leader在一个特定的term和index下,只会创建一个log entry
  • log entry不会改变它们在日志中的位置

特性二通过以下保证:

  • AppendEntries会做log entry的一致性检查,当发送一个AppendEntriesRPC时,leader会带上需要复制的log entry前一个log entry的(index, iterm)

如果follower没有发现与它一样的log entry,那么它会拒绝接受新的log entry 这样就能保证特性二得以满足。

参考

http://thesecretlivesofdata.c...


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

趋势红利

趋势红利

刘润 / 文化发展出版社(原印刷工业出版社) / 2016-6-1 / 45.00

【编辑推荐】 1、国内顶尖的互联网转型专家,海尔、百度等知名企业战略顾问刘润送给传统企业的转型、创新“导航仪”,这个时代企业家的必修课 站在近200年商业全景图角度,刘润发现三种企业类型(产品型、渠道型、营销型),针对不同企业类型定制转型战略(找到自己的未来红利),方便 传统企业对号入座:不走错路就是节省时间,适合自己的最有效率。 本书内容还源自芬尼克兹、红领集团、名创优品、必要......一起来看看 《趋势红利》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具