使用pynlpir增强jieba分词的准确度

栏目: 编程工具 · 发布时间: 6年前

内容简介:在使用jieba分词时,发现分词准确度不高。特别是一些专业词汇,比如首先安装pynlpir。pynlpir的相关说明可以参考https://pynlpir.readthedocs.io/en/latest/index.html。而后为jieba生成字典。jieba支持的字典格式为

在使用jieba分词时,发现分词准确度不高。特别是一些专业词汇,比如 堡垒机 ,只能分出 堡垒 ,并不能分出 堡垒机 。这样导致的问题是很多时候检索并不准确。 经过对比测试,发现 nlpir 进行分词效果更好。但是nlpir的效率和各种支持又没有jieba那么好,因此采用了一种折中的方案。 就是先用nlpir生成字典,然后使用jieba利用字典进行分词。

首先安装pynlpir。pynlpir的相关说明可以参考https://pynlpir.readthedocs.io/en/latest/index.html。

// 安装
$ pip install pynlpir
// 证书更新
$ pynlpir update

而后为jieba生成字典。jieba支持的字典格式为 单词 词频 ,中间用空格隔开,每行一个单词。 使用pynlpir生成词典的方式如下:

import pynlpir
pynlpir.open()
f = open("doc.txt", "r")
s= f.readlines()
s = '\n'.join(s)
f.close()
key_words = pynlpir.get_key_words(s, max_words=1000, weighted=True)
for key_word in key_words:
    print '%s %s' % (key_word[0], int(key_word[1]*10))

这里之所以为每个 词频*10 ,主要是为了加强其权重。而后再使用jieba利用该字典进行分词。至于jieba分词如何使用词典,可以参考https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py。这里就不再重复了。

对于sphinx-doc,其最新版本也是使用的jieba分词。同样可以使用本方法来提升其分词的准确率。 中文分词引入可以参考https://www.chenyudong.com/archives/sphinx-doc-support-chinese-search.html。 在conf.py中,配置 html_search_options = {'dict': '/usr/lib/jieba.txt'} ,加入字典的路径。这里一定要绝对路径。相对路径不能生效。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

人人都是架构师:分布式系统架构落地与瓶颈突破

人人都是架构师:分布式系统架构落地与瓶颈突破

高翔龙 / 电子工业出版社 / 2017-5 / 69

《人人都是架构师:分布式系统架构落地与瓶颈突破》并没有过多渲染系统架构的理论知识,而是切切实实站在开发一线角度,为各位读者诠释了大型网站在架构演变过程中出现一系列技术难题时的解决方案。《人人都是架构师:分布式系统架构落地与瓶颈突破》首先从分布式服务案例开始介绍,重点为大家讲解了大规模服务化场景下企业应该如何实施服务治理;然后在大流量限流/消峰案例中,笔者为大家讲解了应该如何有效地对流量实施管制,避......一起来看看 《人人都是架构师:分布式系统架构落地与瓶颈突破》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具