【火炉炼AI】机器学习029-找到离你最近的邻居

栏目: Python · 发布时间: 6年前

内容简介:(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )最近邻算法的核心思想是:想要判断你属于哪一个类别,先找离你最近的K个邻居,看看这些邻居的大部分属于哪个类别,那么就可以认为你也属于这个类别。所以,根据这种核心思想,有三个重要的因素:距离度量,K的大小和分类规则。在KNN中,当训练数据集和三要素确定后,相当于将特征空间划分为一些子空间。对于距离度量,有很多种方式,常用的是闵可夫斯基距离,其计算公式为:

(本文所使用的 Python 库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

最近邻算法的核心思想是:想要判断你属于哪一个类别,先找离你最近的K个邻居,看看这些邻居的大部分属于哪个类别,那么就可以认为你也属于这个类别。

所以,根据这种核心思想,有三个重要的因素:距离度量,K的大小和分类规则。在KNN中,当训练数据集和三要素确定后,相当于将特征空间划分为一些子空间。对于距离度量,有很多种方式,常用的是闵可夫斯基距离,其计算公式为:

【火炉炼AI】机器学习029-找到离你最近的邻居

其中P>=1, 当P=2时,是欧式距离,当p=1时,是曼哈顿距离。

对于K的大小选择是一个重要的考虑因素,其选择会对算法的结果有重大影响。如果K太小,就相当于用较小领域中的训练实例进行预测,这样会被噪声所影响,同时方差比较大,也就是模型的过拟合现象会比较严重。如果K太大,就相当于用很多的邻居来判断,此时会走向另一个极端,使得模型产生欠拟合现象。

在具体应用中,一般选择较小K并且K是奇数,通常使用交叉验证的方法来获取最合适的K值。

分类规则一般常用多数表决,即大多数实例所属的类别就认为是新样本的类别。这个很容易理解。

1. 查找最近的K个邻居

下面我们自己用代码寻找一个新样本的K个最近的邻居,看看这些邻居们都在哪儿。

# 1,寻找最近的K个邻居
from sklearn.neighbors import NearestNeighbors
# 自定义一些数据集
X = np.array([[1, 1], [1, 3], [2, 2], [2.5, 5], [3, 1], 
        [4, 2], [2, 3.5], [3, 3], [3.5, 4]])
# 画出这些数据集在平面图上的分布情况
plt.scatter(X[:,0],X[:,1],marker='o',color='k')

# 一个新样本
new_sample=np.array([[2.6,1.7]])
plt.scatter(new_sample[:,0],new_sample[:,1],marker='*',color='r')
复制代码
【火炉炼AI】机器学习029-找到离你最近的邻居

上面只是将原始数据集和新样本的分布绘制到二维平面上,但是没有计算其最近的距离和邻居。下面代码是计算过程。

# 构建KNN模型,计算最近的K个数据点
K=3
KNN=NearestNeighbors(n_neighbors=K,algorithm='ball_tree').fit(X)
distances,indices=KNN.kneighbors(new_sample)

# 打印最近的K个邻居
for rank, (indices, distance) in \
    enumerate(zip(indices[0][:K],distances[0][:K])):
    print('rank: {} --> {}, distance: {:.3f}'.format(rank, X[index],distance))
复制代码

----------------------------输---------出--------------------------------

rank: 0 --> [2. 2.], distance: 0.671 rank: 1 --> [3. 1.], distance: 0.806 rank: 2 --> [3. 3.], distance: 1.360

----------------------------------完-------------------------------------

可以看出距离新样本最近的三个邻居分别是【2,2】,【3,1】,【3,3】,而且各自的距离也打印出来了。实际上,KNN.kneighbors(new_sample)返回的indices数组是一个已经 排序 的数组,我们只需要从中获取下标即可。

下面为了方便观察,将最近的K个邻居用别的颜色重点标注出来。

【火炉炼AI】机器学习029-找到离你最近的邻居

########################小**********结###############################

1,想要寻找新样本最近的K个邻居,需要首先构建一个KNN模型,然后用数据集训练该模型。

2,然后使用函数KNN.kneighbors(new_sample)即可得到距离的排序,从这些排序中可以计算出最近的K个邻居。

#################################################################

注:本部分代码已经全部上传到( 我的github )上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Pro Git (Second Edition)

Pro Git (Second Edition)

Scott Chacon、Ben Straub / Apress / 2014-11-9 / USD 59.99

Scott Chacon is a cofounder and the CIO of GitHub and is also the maintainer of the Git homepage ( git-scm.com ) . Scott has presented at dozens of conferences around the world on Git, GitHub and the ......一起来看看 《Pro Git (Second Edition)》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具