数据结构与算法1-复杂度分析1

栏目: 编程工具 · 发布时间: 6年前

内容简介:为什么需要复杂度分析?有两种估算方法:1.事后统计法 2.大O复杂度表示法时间复杂度分析

为什么需要复杂度分析?

有两种估算方法:1.事后统计法 2.大O复杂度表示法

  1. 事后统计法: 把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小
  • 测试结果非常依赖测试环境
  • 测试结果受数据规模的影响很大
  1. 我们需要一个不用具体的测试数据来测试,就可以粗略的估计计算法的执行效率的方法——大O复杂度表示法

    从CPU角度看,代码的执行类似这种操作:读数据——运算——写数据。

    所有代码的执行时间T(n)与每行代码的执行次数n成正比。T(n)=O(f(n)),例:T(n)=O(2n+2),T(n)=O(2n²+2n+3)

    大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以也叫,渐进时间复杂度,简称时间复杂度。T(n) = O(n); T(n) = O(n²)。

时间复杂度分析

  1. 只关注循环执行次数最多的一段代码:核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

几种常见时间复杂度实例分析

常量阶O(1) 对数阶O(logn)  线性阶O(n) 线性对数阶O(nlogn)

指数阶O(2^n)       阶乘阶O(n!)

粗略分为两类:多项式量级和非多项式量级,非多项式量级只有两个:O(2^n)和O(n!)。


以上所述就是小编给大家介绍的《数据结构与算法1-复杂度分析1》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

矩阵计算

矩阵计算

Gene H. Golub、Charles F. Van Loan / 袁亚湘 / 人民邮电出版社 / 2009 / 89.00元

本书是国际上数值计算方面的权威著作,有“圣经”之称。被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等很多世界知名学府用作相关课程的教材或主要参考书。 本书系统地介绍了矩阵计算的基本理论和方法。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献,非常有助于自学。一起来看看 《矩阵计算》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试