内容简介:或许您已经在网上看了许多的MOOC,阅读了很多工具书,但是您有可能仍然担心找不到工作或根本没有找到工作。在数据科学领域找到合适的工作的确有一定难度。最好的向HR展现您能力的方式就是准备一个文件夹。在文件夹中放入以下五种您做过的数据科学项目。通常来讲,数据科学家在一个新的项目中预计会花80%的时间来清洗数据。这对于团队来说是一个长而痛苦的过程。如果您能展示您在清洗数据上具有丰富的经验,您就会变得很有价值。您可以找一些杂乱无章的数据集练习清理数据来增加您的经验。如果您用的是Python,Pandas是一个很好
或许您已经在网上看了许多的MOOC,阅读了很多 工具 书,但是您有可能仍然担心找不到工作或根本没有找到工作。在数据科学领域找到合适的工作的确有一定难度。最好的向HR展现您能力的方式就是准备一个文件夹。在文件夹中放入以下五种您做过的数据科学项目。
1、数据清洗
通常来讲,数据科学家在一个新的项目中预计会花80%的时间来清洗数据。这对于团队来说是一个长而痛苦的过程。如果您能展示您在清洗数据上具有丰富的经验,您就会变得很有价值。您可以找一些杂乱无章的数据集练习清理数据来增加您的经验。
如果您用的是Python,Pandas是一个很好用的包;如果您用的是R,dplyr包将会是一个不错的选择。确保您展示出以下的技能:
2、探索性数据分析
另一项有关数据科学的重要内容是探索性数据分析(EDA)。这是提出问题的过程,需要您用可视化技术来研究这个数据集。EDA使得分析师能够从数据中得出一些能驱动商业决策的结论。或许您能从客户的数据、销售的趋势、季节的影像中得到有趣的结论。甚至有时候您能有一些和您最初设想完全不同的发现。
用于探索性分析的一些有用的 Python 包是Pandas和Matplotlib。对于R用户,ggplot2包将很有用。EDA项目应该显示以下技能:
用于探索性分析的一些有用的Python包是Pandas和Matplotlib。对于R用户,ggplot2包将很有用。EDA项目应该显示以下技能:
3、交互式数据可视化
交互式数据可视化包括仪表板等工具。这些工具对数据科学团队以及更多面向业务的最终用户都很有用。仪表板允许数据科学团队进行协作,并一起绘制见解。更重要的是,它们为面向业务的客户提供了一种交互式工具。这些人专注于战略目标而非技术细节。通常,数据科学项目的可交付成果将以仪表板的形式出现。
对于Python用户,Bokeh和Plotly库非常适合创建仪表板。对于R用户,请务必查看RStudio的Shiny软件包。您的仪表板项目应突出显示以下重要技能:
4、机器学习
机器学习项目是数据科学组合的另一个重要部分。在您开始构建一些深度学习项目之前,请退后一步。我们说的并不是建立复杂的机器学习模型,而是坚持基础。线性回归和逻辑回归是很好的开始。这些模型更易于解释和与上层管理层沟通。我还建议关注一个对业务有影响的项目,例如预测客户流失,欺诈检测或贷款违约。这比预测花型更贴近于工作实际。
如果您是Python用户,请使用Scikit-learn库。对于R用户,请使用Caret包。您的机器学习项目应该传达以下技能:
5、沟通能力
沟通是数据科学的一个重要方面。能否有效地传达结果是优秀数据科学家与优秀科学家之间的区别。无论您的模型多么花哨,如果您无法向队友或客户解释,您将无法获得他们的支持。幻灯片和笔记本电脑都是很好的沟通工具。尝试将您的一个机器学习项目放入幻灯片格式中。您还可以将Jupyter Notebook或RMarkdown文件用于需要沟通的项目。
确保了解您的目标受众是谁。向高管们展示您的项目和向机器学习专家展示是非常不同的。一定要掌握这些技能:
确保在Jupyter笔记本或RMarkdown文件中记录您的项目。然后,您可以使用Github Pages将这些文件免费转换为静态网站。这是向潜在雇主展示您的项目的好方法。
以上所述就是小编给大家介绍的《干货 :5种项目助你找到数据科学工作》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Head First Design Patterns
Elisabeth Freeman、Eric Freeman、Bert Bates、Kathy Sierra、Elisabeth Robson / O'Reilly Media / 2004-11-1 / USD 49.99
You're not alone. At any given moment, somewhere in the world someone struggles with the same software design problems you have. You know you don't want to reinvent the wheel (or worse, a flat tire),......一起来看看 《Head First Design Patterns》 这本书的介绍吧!