关于机器学习的一些总结

栏目: 编程工具 · 发布时间: 6年前

内容简介:以下是自己在机器学习课程中的一些知识点总结,主要渗透了自己对某些知识点的理解,涵盖的面较广,将会不定期地更新。若有理解不一致之处,望指明并相互探讨。常用的核函数有线性核,多项式核以及高斯核。

以下是自己在机器学习课程中的一些知识点总结,主要渗透了自己对某些知识点的理解,涵盖的面较广,将会不定期地更新。若有理解不一致之处,望指明并相互探讨。

1 SVM中常用的核函数有哪些?如何选择相应的核函数?

常用的核函数有线性核,多项式核以及高斯核。

1.1 线性核

κ ( x , z ) = < x , z > \kappa (x,z) = < x,z >

线性核对应的映射函数为:

ϕ ( x ) = x \phi (x) = x

。即映射空间与原始空间是相同的。它适用于原始数据集是线性可分的情况。此时所使用的是线性SVM。

关于机器学习的一些总结

1.2 多项式核

κ ( x , z ) = [ a < x , z > + c ] b \kappa (x,z) = {[a < x,z > + c]^b}

多项式核将数据从原始空间映射到了高维空间。

考虑数据集在原始空间的分布情况:如果分隔的决策面非线性且较为规则的话(比如,决策面是椭圆,椭球,双曲线等),可以考虑使用多项式核。

关于机器学习的一些总结 关于机器学习的一些总结

1.3 高斯核

κ ( x , z ) = exp ( x z 2 2 σ 2 ) \kappa (x,z) = \exp ( - \frac{{{{\left\| {x - z} \right\|}^2}}}{{2{\sigma ^2}}})

高斯核将数据从原始空间映射到了无限维空间。关于高斯核与多项式核的关系,可以参见这篇文章: 关于支持向量机(SVM)的高斯核和惩罚因子C的理解(简单易懂)

当原始空间的决策面较不规则,难以使用多项式核进行分类的时候,可以考虑高斯核。因为多项式核只是将原始空间映射成高维空间,而高斯核将原始空间映射成了无限维,所以对应的决策面可以更复杂,可以使得数据更容易被划分(当然这样也就可能出现过拟合的情况,关于高斯核参数 σ \sigma 的理解,上文 关于支持向量机(SVM)的高斯核和惩罚因子C的理解(简单易懂) 亦有介绍)。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Computers and Intractability

Computers and Intractability

M R Garey、D S Johnson / W. H. Freeman / 1979-4-26 / GBP 53.99

This book's introduction features a humorous story of a man with a line of people behind him, who explains to his boss, "I can't find an efficient algorithm, but neither can all these famous people." ......一起来看看 《Computers and Intractability》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具