MLSQL 对Python的支持之路

栏目: Python · 发布时间: 6年前

内容简介:Python是做机器学习框架一定要支持的。MLSQL很早就支持集成Python脚本做模型的训练和预测。训练的使用方式:可以看到,你可以直接指定一个python脚本路径。预测也是同样的:

前言

Python是做机器学习框架一定要支持的。MLSQL很早就支持集成 Python 脚本做模型的训练和预测。

训练的使用方式:

load libsvm.`sample_libsvm_data.txt` as data;

train data as PythonAlg.`/tmp/model1`
where
pythonScriptPath="/tmp/train.py"

-- keep the vertion of every model you train
and keepVersion="true"

and  enableDataLocal="true"
and  dataLocalFormat="json"

and  `fitParam.0.batchSize`="1000"
and  `fitParam.0.labelSize`="2"

and validateTable="data"

and `systemParam.pythonPath`="python"
and `systemParam.pythonVer`="2.7"
and `kafkaParam.bootstrap.servers`="127.0.0.1:9092"
;

可以看到,你可以直接指定一个python脚本路径。预测也是同样的:

load libsvm.`sample_libsvm_data.txt` as data;

-- register the model we have trained as a funciton.
register PythonAlg.`/tmp/model1` as npredict options
pythonScriptPath="/tmp/predict.py"
;

-- use the predict udf
select npredict(features) from data
as newdata;

问题

前面的支持方式有三个巨大的缺陷,我们在实际使用过程中也是体会明显:

  1. 没有解决Python环境问题。因为是常驻服务模式,让问题变得更加复杂。
  2. 没有项目的概念。对于自己实现的复杂算法,不大可能放在一个脚本中,而且预测脚本和训练脚本往往会依赖一堆的基础脚本。
  3. 没有区分批预测和API预测。批预测适合在批处理或者流式计算中使用。API预测则适合部署成http 接口。

解决办法

  1. 通过conda解决环境问题,每个项目有自己的python运行环境。
  2. 提出项目的概念,即使配置的是一个脚本,系统也会自动生成一个项目来运行。
  3. 以MLFlow为蓝本,指定了一个项目的标准。标准项目应该在根目录有一个MLproject描述文件。

具体示例项目可以参看 这里 ,对应的MLproject文件如下:

name: tutorial

conda_env: conda.yaml

entry_points:
  main:
    train:
        parameters:
          alpha: {type: float, default: 0.5}
          l1_ratio: {type: float, default: 0.1}
        command: "python train.py 0.5 0.1"
    batch_predict:
        parameters:
          alpha: {type: float, default: 0.5}
          l1_ratio: {type: float, default: 0.1}
        command: "python batchPredict.py"
    api_predict:
        parameters:
          alpha: {type: float, default: 0.5}
          l1_ratio: {type: float, default: 0.1}
        command: "python predict.py"

用户需要提供三个核心脚本:批处理,批预测,API预测。具体如何写可以看看示例项目。我们现在来看看怎么使用这个项目:

首先是训练部分:

load csv.`/Users/allwefantasy/CSDNWorkSpace/mlflow/examples/sklearn_elasticnet_wine/wine-quality.csv` 
where header="true" and inferSchema="true" 
as data;

train data as PythonAlg.`/tmp/abc` where pythonScriptPath="/Users/allwefantasy/CSDNWorkSpace/mlflow/examples/sklearn_elasticnet_wine"
 and keepVersion="true"
 and  enableDataLocal="true"
 and  dataLocalFormat="csv"
 ;

非常简单,你只要指定项目地址即可。接着我们做批量预测:

predict data as PythonAlg.`/tmp/abc`;

这里我们无需指定项目地址,原因是在/tmp/abc里已经保存了所有需要的元数据。

接着我们部署一个 API服务 ,

通过http接口利用如下语句注册模型:

register PythonAlg.`/tmp/abc` as pj;

接着就可以预测了(我写了段程序模拟请求)

import org.apache.http.client.fluent.{Form, Request}

object Test {
  def main(args: Array[String]): Unit = {
    val sql = "select pj(vec_dense(features)) as p1 "

    val res = Request.Post("http://127.0.0.1:9003/model/predict").bodyForm(Form.form().
      add("sql", sql).
      add("data", s"""[{"features":[ 0.045, 8.8, 1.001, 45.0, 7.0, 170.0, 0.27, 0.45, 0.36, 3.0, 20.7 ]}]""").
      add("dataType", "row")
      .build()).execute().returnContent().asString()
    println(res)
  }
}

完成。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法:C语言实现

算法:C语言实现

塞奇威克 / 机械工业出版社 / 2006-9 / 69.00元

本书是Sedgewick彻底修订和重写的C算法系列的第一本。全书分为四部分,共16章,第一部分“基础知识”(第1-2章)介绍基本算法分析原理。第二部分“数据结构”(第3-5章)讲解算法分析中必须掌握的数据结构知识,主要包括基本数据结构,抽象数据结构,递归和树。一起来看看 《算法:C语言实现》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具