内容简介:跳表(skip list) 对标的是平衡树(AVL Tree),是一种 插入/删除/搜索 都是首先,跳表处理的是有序的链表(一般是双向链表,下图未表示双向),如下:这个链表中,如果要搜索一个数,需要从头到尾比较每个元素是否匹配,直到找到匹配的数为止,即时间复杂度是 $O(n)$。同理,插入一个数并保持链表有序,需要先找到合适的插入位置,再执行插入,总计也是 $O(n)$ 的时间。
跳表(skip list) 对标的是平衡树(AVL Tree),是一种 插入/删除/搜索 都是 O(log n)
的数据结构。它最大的优势是原理简单、容易实现、方便扩展、效率更高。因此在一些热门的项目里用来替代平衡树,如 redis, leveldb 等。
首先,跳表处理的是有序的链表(一般是双向链表,下图未表示双向),如下:
这个链表中,如果要搜索一个数,需要从头到尾比较每个元素是否匹配,直到找到匹配的数为止,即时间复杂度是 $O(n)$。同理,插入一个数并保持链表有序,需要先找到合适的插入位置,再执行插入,总计也是 $O(n)$ 的时间。
那么如何提高搜索的速度呢?很简单,做个索引:
如上图,我们新创建一个链表,它包含的元素为前一个链表的偶数个元素。这样在搜索一个元素时,我们先在上层链表进行搜索,当元素未找到时再到下层链表中搜索。例如搜索数字 19
时的路径如下图:
先在上层中搜索,到达节点 17
时发现下一个节点为 21
,已经大于 19
,于是转到下一层搜索,找到的目标数字 19
。
我们知道上层的节点数目为 $n/2$,因此,有了这层索引,我们搜索的时间复杂度降为了:$O(n/2)$。同理,我们可以不断地增加层数,来减少搜索的时间:
在上面的 4 层链表中搜索 25
,在最上层搜索时就可以直接跳过 21
之前的所有节点,因此十分高效。
更一般地,如果有 $k$ 层,我们需要的搜索次数会小于 $\lceil \frac{n}{2^k} \rceil + k$ ,这样当层数 $k$ 增加到 $\lceil \log_{2} n \rceil$ 时,搜索的时间复杂度就变成了 $\log n$。其实这背后的原理和二叉搜索树或二分查找很类似,通过索引来跳过大量的节点,从而提高搜索效率。
上节的结构是“静态”的,即我们先拥有了一个链表,再在之上建了多层的索引。但是在实际使用中,我们的链表是通过多次插入/删除形成的,换句话说是“动态”的。上节的结构要求上层相邻节点与对应下层节点间的个数比是 1:2
,随意插入/删除一个节点,这个要求就被被破坏了。
因此跳表(skip list)表示,我们就不强制要求 1:2
了,一个节点要不要被索引,建几层的索引,都在节点插入时由抛硬币决定。当然,虽然索引的节点、索引的层数是随机的,为了保证搜索的效率,要大致保证每层的节点数目与上节的结构相当。下面是一个随机生成的跳表:
可以看到它每层的节点数还和上节的结构差不多,但是上下层的节点的对应关系已经完全被打破了。
现在假设节点 17
是最后插入的,在插入之前,我们需要搜索得到插入的位置:
接着,抛硬币决定要建立几层的索引,伪代码如下:
randomLevel() lvl := 1 -- random() that returns a random value in [0...1) while random() < p and lvl < MaxLevel do lvl := lvl + 1 return lvl
上面的伪代码相当于抛硬币,如果是正面( random() < p
)则层数加一,直到抛出反面为止。其中的 MaxLevel
是防止如果运气太好,层数就会太高,而太高的层数往往并不会提供额外的性能,一般 $MaxLevel = \log_{1/p}{n}$。现在假设 randomLevel
返回的结果是 2
,那么就得到下面的结果。
如果要删除节点,则把节点和对应的所有索引节点全部删除即可。当然,要删除节点时需要先搜索得到该节点,搜索过程中可以把路径记录下来,这样删除索引层节点的时候就不需要多次搜索了。
显然,在最坏的情况下,所有节点都没有创建索引,时间复杂度为$O(n)$,但在平均情况下,搜索的时间复杂度却是 $O(\log n)$,为什么呢?
一些严格的证明会涉及到比较复杂的概率统计学知识,所以这里只是简单地说明。
上面我们提到 MaxLevel
, 原版论文 中用 L(n)
来表示,要求 L(n)
层有 1/p
个节点,在搜索时可以不理会比 L(n)
更高的层数,直接从 L(n)
层开始搜索,这样效率最高。
直观上看,第 $l$ 层的节点中在第 $l+1$ 层也有索引的个数是 $n_{l+1} = n_l p$ 因此第 $l$ 层的节点个数为:
$$ n_l = n p^{l-1} $$
于是代入 $n_{L(n)} = 1/p$ 得到 $L(n) = \log_{1/p}n$。
上面推导到每层的节点数目,直观上看,如果某一层的节点数目小于等于 1,则可以认为它是最高层了,代入 $np^{l-1} = 1$ 得到层数 $L_{max} = \log_{1/p}n + 1 = L(n) + 1 = O(\log n)$。
实际上这个问题并没有直接的解析解,我们能知道的是,当 $n$ 足够大时,最大能达到的层数为 $O(\log n)$,详情可以参见我的另一篇博客最高楼层问题。
为了计算搜索的时间复杂度,我们可以将查找的过程倒过来,从搜索最后的节点开始,一直向左或向上,直到最顶层。如下图,在路径上的每一点,都可能有两种情况:
p 1-p
于是,设 C(k)
为反向搜索爬到第 k
层的平均路径长度,则有:
C(0) = 0 C(k) = p * (情况1) + (1-p) * (情况2)
将两种情况也用 C
代入,有:
C(k) = p*(1 + C(k–1)) + (1–p)*(1 + C(k)) C(k) = C(k–1) + 1/p C(k) = k/p
上式表明,搜索时,平均在每层上需要搜索的路径长度为 $1/p$,从平均的角度上和我们第一小节构造的“静态”结构相同(p 取 1/2
)。
又注意到,上小节我们知道跳表的最大层数为 $O(\log n)$,因此,搜索的复杂度 $O(\log n) / p = O(\log n)$。
P.S. 这里我们用到的是最大层数,原论文证明时用到的是 $L(n)$,然后再考虑从 $L(n)$ 层到最高层的平均节点个数。这里为了理解方便不再详细证明。
- 各种搜索结构提高效率的方式都是通过空间换时间得到的。
- 跳表最终形成的结构和搜索树很相似。
- 跳表通过随机的方式来决定新插入节点来决定索引的层数。
- 跳表搜索的时间复杂度是 $O(\log n)$,插入/删除也是。
想到快排(quick sort)与其它 排序 算法(如归并排序/堆排序)虽然时间复杂度是一样的,但复杂度的常数项较小;跳表的原论文也说跳表能提供一个常数项的速度提升,因此想着常数项小是不是随机算法的一个特点?这也它们大放异彩的重要因素吧。
以上所述就是小编给大家介绍的《跳表──没听过但很犀利的数据结构》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 数据结构 – 用于构建文件系统的数据结构?
- 荐 用Python解决数据结构与算法问题(三):线性数据结构之栈
- 数据结构和算法面试题系列-C指针、数组和结构体
- 请问二叉树等数据结构的物理存储结构是怎样的?
- 数据结构——单链表
- 常用数据结构
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
JavaScript面向对象编程指南
斯托扬 / 凌杰 / 人民邮电出版社 / 2013-3 / 59.00元
《JavaScript面向对象编程指南》内容包括:JavaScript作为一门浏览器语言的核心思想;面向对象编程的基础知识及其在JavaScript中的运用;数据类型、操作符以及流程控制语句;函数、闭包、对象和原型等概念,以代码重用为目的的继承模式;BOM、DOM、浏览器事件、AJAX和JSON;如何实现JavaScript中缺失的面向对象特性,如对象的私有成员与私有方法;如何应用适当的编程模式,......一起来看看 《JavaScript面向对象编程指南》 这本书的介绍吧!