快速了解HDFS、NameNode和DataNode

栏目: 服务器 · 发布时间: 6年前

内容简介:首先我们来认识一下HDFS, HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。它其实是将一个大文件分成若干块保存在不同服务器的多个节点中。通过联网让用户感觉像是在本地一样查看文件,为了降低文件丢失造成的错误,它会为每个小文件复制多个副本(默认为三个),以此来实现多机器上的多用户分享文件和存储空间。HDFS特点:① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。

概览

首先我们来认识一下HDFS, HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。它其实是将一个大文件分成若干块保存在不同服务器的多个节点中。通过联网让用户感觉像是在本地一样查看文件,为了降低文件丢失造成的错误,它会为每个小文件复制多个副本(默认为三个),以此来实现多机器上的多用户分享文件和存储空间。

HDFS特点:

① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。

② 运行在廉价的机器上。

③ 适合大数据的处理。因为小文件也占用一个块,小文件越多(1000个1k文件)块越 多,NameNode压力越大。

如:将一个大文件分成三块A、B、C的存储方式

PS :数据复制原则:

除了最后一个块之外的文件中的所有块都是相同的大小。

HDFS 的放置策略:

是将一个副本放在本地机架中的一个节点上,另一个位于不同(远程)机架中的节点上,而最后一个位于不同节点上远程机架。

涉及到的属性:

块大小:Hadoop1版本里默认为64M,Hadoop2版本里默认为128M

复制因子:每个文件加上其文件副本的份数

HDFS 的基本结构

快速了解HDFS、NameNode和DataNode

如上图所示,HDFS基本结构分NameNode、SecondaryNameNode、DataNode这几个。

NameNode:是Master节点,有点类似 Linux 里的根目录。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;

SecondaryNameNode:保存着NameNode的部分信息(不是全部信息NameNode宕掉之后恢复数据用),是NameNode的冷备份;合并fsimage和edits然后再发给namenode。(防止edits过大的一种解决方案)

DataNode:负责存储client发来的数据块block;执行数据块的读写操作。是NameNode的小弟。

热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits:元数据的操作日志(针对文件系统做的修改操作记录)

namenode 内存中存储的是=fsimage+edits。

NameNode 详解

作用:

Namenode起一个统领的作用,用户通过namenode来实现对其他数据的访问和操作,类似于root根目录的感觉。

Namenode包含:目录与数据块之间的关系(靠fsimage和edits来实现),数据块和节点之间的关系

fsimage 文件与edits文件是Namenode结点上的核心文件。

Namenode中仅仅存储目录树信息,而关于BLOCK的位置信息则是从各个Datanode上传到Namenode上的。

Namenode的 目录树信息就是物理的存储在fsimage这个文件中 的,当Namenode启动的时候会首先读取fsimage这个文件,将目录树信息装载到内存中。

而edits存储的是日志信息,在Namenode启动后 所有对目录结构的增加,删除,修改等操作都会记录到edits文件中,并不会同步的记录在fsimage中。

而当Namenode结点关闭的时候,也不会将fsimage与edits文件进行合并,这个合并的过程实际上是发生在Namenode启动的过程中。

也就是说,当Namenode启动的时候,首先装载fsimage文件,然后在应用edits文件,最后还会将最新的目录树信息更新到新的fsimage文件中,然后启用新的edits文件。

整个流程是没有问题的,但是有个小瑕疵,就是如果Namenode在启动后发生的改变过多,会导致edits文件变得非常大,大得程度与Namenode的更新频率有关系。

那么在下一次Namenode启动的过程中,读取了fsimage文件后,会应用这个无比大的edits文件,导致启动时间变长,并且不可控,可能需要启动几个小时也说不定。

Namenode的edits文件过大的问题,也就是SecondeNamenode要解决的主要问题。

SecondNamenode会按照一定规则被唤醒,然后进行fsimage文件与edits文件的合并,防止edits文件过大,导致Namenode启动时间过长。

DataNode 详解

DataNode在HDFS中真正存储数据。

首先解释块(block)的概念:

  1. DataNode在存储数据的时候是按照block为单位读写数据的。block是hdfs读写数据的基本单位。
  2. 假设文件大小是100GB,从字节位置0开始,每128MB字节划分为一个block,依此类推,可以划分出很多的block。每个block就是128MB大小。
  3. block本质上是一个 逻辑概念,意味着block里面不会真正的存储数据,只是划分文件的。
  4. block里也会存副本,副本优点是安全,缺点是占空间

SecondaryNode

执行过程:从NameNode上 下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,同时重置NameNode的edits.

工作原理(转自“大牛笔记”的博客,由于实现是清晰,受益很大,在此不做改动)

写操作:

快速了解HDFS、NameNode和DataNode

有一个文件FileA,100M大小。Client将FileA写入到HDFS上。

HDFS按默认配置。

HDFS分布在三个机架上Rack1,Rack2,Rack3。

a.Client将FileA按64M分块。分成两块,block1和Block2;

b.Client向nameNode发送写数据请求,如图蓝色虚线①------>。

c.NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②--------->。

Block1: host2,host1,host3

Block2: host7,host8,host4

原理:

NameNode具有RackAware机架感知功能,这个可以配置。

若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。

若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。

d.client向DataNode发送block1;发送过程是以流式写入。

流式写入过程,

 1>将64M的block1按64k的package划分;

2>然后将第一个package发送给host2;

3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;

4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。

5>以此类推,如图红线实线所示,直到将block1发送完毕。

6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。

7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线

8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。

9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。

10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。

分析,通过写过程,我们可以了解到:

①写1T文件,我们需要3T的存储,3T的网络流量贷款。

②在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。

③挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。

读操作:

快速了解HDFS、NameNode和DataNode

读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。

那么,读操作流程为:

a.client向namenode发送读请求。

b.namenode查看Metadata信息,返回fileA的block的位置。

block1:host2,host1,host3

block2:host7,host8,host4

c.block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;

上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据。

运算和存储在同一个服务器中,每一个服务器都可以是本地服务器

补充

元数据

元数据被定义为:描述数据的数据,对数据及信息资源的描述性信息。(类似于Linux中的i节点)

以 “blk_”开头的文件就是 存储数据的block。这里的命名是有规律的,除了block文件外,还有后 缀是“meta”的文件 ,这是block的源数据文件,存放一些元数据信息。

数据复制

NameNode做出关于块复制的所有决定。它周期性地从集群中的每个DataNode接收到一个心跳和一个阻塞报告。收到心跳意味着DataNode正常运行。Blockreport包含DataNode上所有块的列表。

使用HDFS dfs命令对文件进行增删改查操作 https://www.linuxidc.com/Linux/2018-08/153641.htm

Hadoop集群间的HDFS文件拷贝 https://www.linuxidc.com/Linux/2017-09/146879.htm

Linux公社的RSS地址https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-10/154605.htm


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

白话机器学习算法

白话机器学习算法

[新加坡] 黄莉婷、[新加坡] 苏川集 / 武传海 / 人民邮电出版社 / 2019-2 / 49.00元

与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无监督学习算法,以及回归分析、k最近邻、支持向量机、决策树、随机森林、神经网络等监督学习算法,并概述强化学习算法的思想。任何对机器学习和数据科学怀有好奇心的人都可以通过本书构建知识体系。一起来看看 《白话机器学习算法》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具