内容简介:人工智能受益于神经网络和深度学习在算法上的突破,技术水平得到飞跃提升。未来,计算机视觉、机器学习、自然语言处理、机器人技术、语音识别等人工智能技术或将给整个人类社会带来巨大改变。语音识别与自然语言处理应用
人工智能受益于神经网络和深度学习在算法上的突破,技术水平得到飞跃提升。未来,计算机视觉、机器学习、自然语言处理、机器人技术、语音识别等人工智能技术或将给整个人类社会带来巨大改变。
.
语音识别与自然语言处理应用
智能客服
整合全集团对外的客户服务通道,提供多模式融合(包括电话、网页在线、微信、短信及APP等)的在线智能客服;对内实现语音分析、客服助理等商业智能应用。为坐席提供一种辅助手段,帮助坐席快速解决客户问题。客服助理通过实时语音识别,实时语义理解,掌握客户需求,自动推送客户特征、知识库等内容。借助于微信公众号等平台,推出语音问答系统,打造个人金融助理形象。
语音数据挖掘
语音语义分析自动给出重点信息聚类,联想数据集合关联性,检索关键词,并汇总热词,发现最新的市场机遇和客户关注热点。同时,根据金融行业客服与客户的通话情况,可进行业务咨询热点问题梳理统计,由机器进行自动学习,梳理生成知识问答库,并作为后续机器自动回复客户问题的参考依据。
计算机视觉与生物特征识别应用
人像监控预警
利用网点和ATM摄像头,增加人像识别功能,提前识别可疑人员、提示可疑行为动作,识别VIP客户。
员工违规行为监控
利用网点柜台内部摄像头,增加员工可疑行为识别监控功能,记录并标记疑似交易,并提醒后台监控人员进一步分析,同时起到警示作用。
核心区域安全监控
在银行内部核心区域增加人像识别摄像头,人员进出必须通过人脸识别及证件一致方可进入,同时对于所有进出人员进行人像登记,防止陌生人尾随进出相关区域。如集中运营中心、数据中心机房等。
机器学习、神经网络应用与知识图谱
金融预测、反欺诈
大规模采用机器学习,导入海量金融交易数据,使用深度学习技术,从金融数据中自动发现模式,如分析信用卡数据,识别欺诈交易,并提前预测交易变化趋势,提前做出相应对策。基于机器学习技术构建金融知识图谱,基于大数据的风控需要把不同来源的数据(结构化,非结构)整合到一起,它可以检测数据当中的不一致性,分析企业的上下游、合作、竞争对手、子母公司、投资、对标等关系。
融资授信决策
通过数据筛选、建模和预测打分,并将不同的资产分类和做分别处理。比如:坏资产可直接标签为“司法诉讼”,并提醒相关人员进行诉讼流程。通过提取个人及企业在其主页、社交媒体等地方的数据,一来可以判断企业或其产品在社会中的影响力,比如观测App下载量,微博中提及产品的次数,对其产品的评价;此外将数据结构化后,也可推测投资的风险点。借助机器学习完成传统金融企业无法做到的放贷过程中对借款人还贷能力进行实时监控,从而及时对后续可能无法还贷的人进行事前的干预,以减少因坏账而带来的损失。
智能投顾
根据马科维茨的现代资产组合理论(MTP),结合个人客户的风险偏好和理财目标,利用人工智能算法和互联网技术为客户提供资产管理和在线投资建议服务,实现个人客户的批量投资顾问服务。
服务机器人技术应用
在机房、服务器等核心区域投放24小时巡检机器人,及时发现处理潜在风险,替代或辅助人工进行监控。在网点大堂尝试设置智慧机器人,赋予机器人拟人化,赋予其人类的形象和相应感情、动作。对网点客户进行业务咨询答疑、辅助分流,采集客户数据,开展大数据营销工作,完成查询、开卡、销卡等业务的辅助办理。
当前,人工智能技术在辅助人工、提高劳动生产率上发挥了积极作用,金融行业作为科技发展的重要应用和践行者,紧跟人工智能发展趋势,积极尝试在各领域的运用与验证,促进社会发展。
在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏 多智时代 ,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 人工智能会取代人工翻译吗?
- “人工”智能究竟需要多少人工?
- 腾讯发布人工智能辅助翻译 致敬人工翻译
- 你负责人工智能哪部分?人工那部分;知识图谱的构建主要靠人工还是机器?
- 忽略这一点,人工智能变人工智障的!
- Unity 人工智能挑战赛 全面启动,打破人工智能研究瓶颈
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Python神经网络编程
[英]塔里克·拉希德(Tariq Rashid) / 林赐 / 人民邮电出版社 / 2018-4 / 69.00元
神经网络是一种模拟人脑的神经网络,以期能够实现类人工智能的机器学习 技术。 本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书 分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使 用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读 者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改......一起来看看 《Python神经网络编程》 这本书的介绍吧!