周志华:机器学习与数据挖掘

栏目: 数据库 · 发布时间: 6年前

“机器学习”是人工智能的核心研究领域之一, 其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。

“数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。

因为机器学习和数据挖掘有密切的联系,受主编之邀,本文把它们放在一起做一个粗浅的介绍。

特别提示:如果你有兴趣阅读全文,请 点此跳转至本文原始出处


以上所述就是小编给大家介绍的《周志华:机器学习与数据挖掘》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

未来版图

未来版图

麻省理工科技评论 / 人民邮电出版社 / 2018-5-1 / CNY 69.80

《麻省理工科技评论》作为世界上历史悠久、影响力极大的技术商业类杂志,每年都会依据公司的科技领军能力和商业敏感度这两个必要条件,从全球范围内选取50家未来可能会成为行业主导的聪明公司。 这些聪明公司,并非都是行业巨头,甚至专利数量、公司所在地以及资金规模都不在考察范围内。 这些公司是“高精尖科技创新”与“能够保证公司利益* 大化的商业模式”的完 美融合。无论公办私营,无关规模大小,这些遍布全球......一起来看看 《未来版图》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器