内容简介:对于上一篇文章——基本矩阵求解方法主要有:先简单介绍一下直接线性变换法:
对于上一篇文章—— 一分钟详解「本质矩阵」推导过程 中,如何稳健地估计本质矩阵或者基本矩阵呢?正是这篇文章重点介绍的内容。
基本矩阵求解方法主要有:
- 直接线性变换法
- 8点法
- 最小二乘法
- 基于RANSAC的鲁棒方法。
先简单介绍一下直接线性变换法:
注:三个红线标注的三个等式等价。
在上述分析过程中, 如果n>=8时,最小二乘法求解是否是最优估计呢?
接下来,我们重点探讨一下这个问题。
二 稳健估计
2.1 稳健的定义
稳健(robust):对数据噪声的敏感性。
对于上述采样,如果出现外点(距离正确值较远),将会影响实际估计效果。
2.2 RANSAC——随机一致性采样
RANSAC主要解决样本中的外点问题,最多可处理50%的外点情况。
基本思想:RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
- 有一个模型适用于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
- 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
- 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
- 然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
- 最后,通过估计局内点与模型的错误率来评估模型。
这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为它比现有的模型更好而被选用。
对上述步骤,进行简单总结如下:
举个例子: 使用RANSAC——拟合直线
以上所述就是小编给大家介绍的《计算机视觉基本原理——RANSAC》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- Macaca 计算机视觉实现原理
- 视觉目标跟踪漫谈:从原理到应用
- 云+技术沙龙:计算机视觉的原理及最佳实践
- 浅谈深度学习的技术原理及其在计算机视觉的应用
- 剑桥构建视觉“语义大脑”:兼顾视觉信息和语义表示
- 如何创造性地应用深度学习视觉模型于非视觉任务(附代码)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Haskell函数式编程基础
Simon Thompson / 科学出版社 / 2013-7-1 / 129.00
《Haskell函数式编程基础(第3版)》是一本非常优秀的Haskell函数式程序设计的入门书,各章依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、诸如数组和列表的结构化数据、列表上的原始递归和推理、输入输出的控制处理、类型分类与检测方法、代数数据类型、抽象数据类型、惰性计算等内容。书中包含大量的实例和习题,注重程序测试、程序证明和问题求解,易......一起来看看 《Haskell函数式编程基础》 这本书的介绍吧!