内容简介:1.APScheduler简介:APScheduler是Python的一个定时任务框架,可以很方便的满足用户定时执行或者周期执行任务的需求,它提供了基于日期date、固定时间间隔interval 、以及类似于Linux上的定时任务crontab类型的定时任务。并且该框架不仅可以添加、删除定时任务,还可以将任务存储到数据库中,实现任务的持久化,所以使用起来非常方便。2.APScheduler安装:
1.APScheduler简介:
APScheduler是 Python 的一个定时任务框架,可以很方便的满足用户定时执行或者周期执行任务的需求,它提供了基于日期date、固定时间间隔interval 、以及类似于 Linux 上的定时任务crontab类型的定时任务。并且该框架不仅可以添加、删除定时任务,还可以将任务存储到数据库中,实现任务的持久化,所以使用起来非常方便。
2.APScheduler安装:
APScheduler的安装相对来说也非常简单,可以直接利用pip安装,如果没有pip可以下载源码,利用源码安装。
1).利用pip安装:(推荐)
# pip install apscheduler
2).基于源码安装: https://pypi.python.org/pypi/APScheduler/
# python setup.py install
3.基本概念
APScheduler有四种组件及相关说明:
1) triggers(触发器):触发器包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行,除了他们自己初始化配置外,触发器完全是无状态的。
2)job stores(作业存储):用来存储被调度的作业,默认的作业存储器是简单地把作业任务保存在内存中,其它作业存储器可以将任务作业保存到各种数据库中,支持 MongoDB 、 Redis 、SQLAlchemy存储方式。当对作业任务进行持久化存储的时候,作业的数据将被序列化,重新读取作业时在反序列化。
3) executors(执行器):执行器用来执行定时任务,只是将需要执行的任务放在新的线程或者线程池中运行。当作业任务完成时,执行器将会通知调度器。对于执行器,默认情况下选择ThreadPoolExecutor就可以了,但是如果涉及到一下特殊任务如比较消耗CPU的任务则可以选择ProcessPoolExecutor,当然根据根据实际需求可以同时使用两种执行器。
4) schedulers(调度器):调度器是将其它部分联系在一起,一般在应用程序中只有一个调度器,应用开发者不会直接操作触发器、任务存储以及执行器,相反调度器提供了处理的接口。通过调度器完成任务的存储以及执行器的配置操作,如可以添加。修改、移除任务作业。
APScheduler提供了多种调度器,可以根据具体需求来选择合适的调度器,常用的调度器有:
BlockingScheduler:适合于只在进程中运行单个任务的情况,通常在调度器是你唯一要运行的东西时使用。
BackgroundScheduler: 适合于要求任何在程序后台运行的情况,当希望调度器在应用后台执行时使用。
AsyncIOScheduler:适合于使用asyncio框架的情况
GeventScheduler: 适合于使用gevent框架的情况
TornadoScheduler: 适合于使用Tornado框架的应用
TwistedScheduler: 适合使用Twisted框架的应用
QtScheduler: 适合使用QT的情况
1)下面一个简单的示例:
import time
from apscheduler.schedulers.blocking import BlockingScheduler
def test_job():
print time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
scheduler = BlockingScheduler()
'''
#该示例代码生成了一个BlockingScheduler调度器,使用了默认的默认的任务存储MemoryJobStore,以及默认的执行器ThreadPoolExecutor,并且最大线程数为10。
'''
scheduler.add_job(test_job, 'interval', seconds=5, id='test_job')
'''
#该示例中的定时任务采用固定时间间隔(interval)的方式,每隔5秒钟执行一次。
#并且还为该任务设置了一个任务id
scheduler.start()
2)如果想执行一些复杂任务,如上边所说的同时使用两种执行器,或者使用多种任务存储方式,并且需要根据具体情况对任务的一些默认参数进行调整。可以参考下面的方式。(源码解析: http://apscheduler.readthedocs.io/en/latest/userguide.html )
第一种方式:
from pytz import utc
from apscheduler.schedulers.background import BackgroundScheduler # 导入调度器
from apscheduler.jobstores.mongodb import MongoDBJobStore # 导入作业存储
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore # 导入作业存储
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor # 导入执行器
jobstores = {
'mongo': MongoDBJobStore(),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(20),
'processpool': ProcessPoolExecutor(5)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)
第二种方式:
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler({
'apscheduler.jobstores.mongo': {
'type': 'mongodb'
},
'apscheduler.jobstores.default': {
'type': 'sqlalchemy',
'url': 'sqlite:///jobs.sqlite'
},
'apscheduler.executors.default': {
'class': 'apscheduler.executors.pool:ThreadPoolExecutor',
'max_workers': '20'
},
'apscheduler.executors.processpool': {
'type': 'processpool',
'max_workers': '5'
},
'apscheduler.job_defaults.coalesce': 'false',
'apscheduler.job_defaults.max_instances': '3',
'apscheduler.timezone': 'UTC',
})
第三种方式:
from pytz import utc
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ProcessPoolExecutor
jobstores = {
'mongo': {'type': 'mongodb'},
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': {'type': 'threadpool', 'max_workers': 20},
'processpool': ProcessPoolExecutor(max_workers=5)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler()
scheduler.configure(jobstores=jobstores, executors=executors,job_defaults=job_defaults, timezone=utc)
5.对任务作业的基本操作:
1).添加作业有两种方式:第一种可以直接调用add_job(),第二种使用scheduled_job()修饰器。
而add_job()是使用最多的,它可以返回一个apscheduler.job.Job实例,因而可以对它进行修改或者删除,而使用修饰器添加的任务添加之后就不能进行修改。
#!/usr/bin/env python
#-*- coding:UTF-8
import time
import datetime
from apscheduler.schedulers.blocking import BlockingScheduler
def job1(f):
print time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), f
def job2(arg1, args2, f):
print f, args1, args2
def job3(**args):
print args
APScheduler支持以下三种定时任务:
cron: crontab类型任务
interval: 固定时间间隔任务
date: 基于日期时间的一次性任务
scheduler = BlockingScheduler()
#循环任务示例
scheduler.add_job(job1, 'interval', seconds=5, args=(1,), id='test_job1')
#定时任务示例
scheduler.add_job(job1, 'cron', second='*/5', args=(1,2,3,), id='test_job2')
#一次性任务示例
scheduler.add_job(job1, next_run_time=(datetime.datetime.now() + datetime.timedelta(seconds=10)), args=(1,), id='test_job3')
传递参数的方式有元组(tuple)、列表(list)、字典(dict)
注意:不过需要注意采用元组传递参数时后边需要多加一个逗号
#基于list
scheduler.add_job(job2, 'interval', seconds=5, args=['a','b','list'], id='test_job4')
#基于tuple
scheduler.add_job(job2, 'interval', seconds=5, args=('a','b','tuple',), id='test_job5')
#基于dict
scheduler.add_job(job3, 'interval', seconds=5, kwargs={'f':'dict', 'a':1,'b':2}, id='test_job6)
print scheduler.get_jobs()
scheduler.start()
或者使用scheduled_job()修饰器来添加作业:
@sched.scheduled_job('cron', second='*/5' ,id='my_job_id',)
def test_task():
print("Hello world!")
2).获得任务列表:
可以通过get_jobs方法来获取当前的任务列表,也可以通过get_job()来根据job_id来获得某个任务的信息。并且apscheduler还提供了一个print_jobs()方法来打印格式化的任务列表。
例如:
scheduler.add_job(my_job, 'interval', seconds=5, id='my_job_id' name='test_job')
print scheduler.get_job('my_job_id')
print scheduler.get_jobs()
3).修改任务:
修改任务的属性可以使用apscheduler.job.Job.modify()或者modify_job()方法,可以修改除了id的其它任何属性。
例如:
job = scheduler.add_job(my_job, 'interval', seconds=5, id='my_job' name='test_job')
job.modify(max_instances=5, name='my_job')
4).删除任务:
删除调度器中的任务有可以用remove_job()根据job ID来删除指定任务或者使用remove(),如果使用remove()需要事先保存在添加任务时返回的实例对象,任务删除后就不会在执行。
注意:通过scheduled_job()添加的任务只能使用remove_job()进行删除。
例如:
job = scheduler.add_job(my_job, 'interval', seconds=5, id='my_job_id' name='test_job')
job.remove()
或者
scheduler.add_job(my_job, 'interval', seconds=5, id='my_job_id' name='test_job')
scheduler.remove_job('my_job')
5).暂停与恢复任务:
暂停与恢复任务可以直接操作任务实例或者调度器来实现。当任务暂停时,它的运行时间会被重置,暂停期间不会计算时间。
暂停任务:
apscheduler.job.Job.pause()
apscheduler.schedulers.base.BaseScheduler.pause_job()
恢复任务
apscheduler.job.Job.resume()
apscheduler.schedulers.BaseScheduler.resume_job()
6).启动调度器
可以使用start()方法启动调度器,BlockingScheduler需要在初始化之后才能执行start(),对于其他的Scheduler,调用start()方法都会直接返回,然后可以继续执行后面的初始化操作。
例如:
from apscheduler.schedulers.blocking import BlockingScheduler
def my_job():
print "Hello world!"
scheduler = BlockingScheduler()
scheduler.add_job(my_job, 'interval', seconds=5)
scheduler.start()
7).关闭调度器:
使用下边方法关闭调度器:
scheduler.shutdown()
默认情况下调度器会关闭它的任务存储和执行器,并等待所有正在执行的任务完成,如果不想等待,可以进行如下操作:
scheduler.shutdown(wait=False)
注意:
当出现No handlers could be found for logger “apscheduler.scheduler”次错误信息时,说明没有 logging模块的logger存在,所以需要添加上,对应新增内容如下所示(仅供参):
import logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datafmt='%a, %d %b %Y %H:%M:%S',
filename='/var/log/aaa.txt',
filemode='a'
)
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-09/154439.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 动态任务执行框架想法篇
- 任务调度框架FluentScheduler简介
- 分布式定时任务调度框架实践
- 如何选型一个合适的框架:分布式任务调度框架选型
- 使用 Go 语言实现一个异步任务框架
- 大数据计算框架Spark之任务调度
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
创投之巅——中国创投精彩案例
投资界网站 / 人民邮电出版社 / 2018-11 / 69.00
中国的科技产业发展,与创投行业密不可分。在过去的几十年间,资本与科技的结合,缔造了众多创业“神话”。回顾这些科技巨头背后的资本路径,可以给如今的国内创业者很多有益的启发。 本书从风险投资回报率、投资周期、利润水平、未来趋势等多个维度,筛选出了我国过去几十年中最具代表性的创业投资案例,对其投资过程和企业成长过程进行复盘和解读,使读者可以清晰地看到优秀创业公司的价值与卓越投资人的投资逻辑。一起来看看 《创投之巅——中国创投精彩案例》 这本书的介绍吧!