内容简介:Abstract.Levmar is GPL native ANSI C implementations of the Levenberg-Marquardt optimization algorithm.The blog focus on the compilation of levmar on Windows with Visual Studio.Key Words.Levmar, C, LM least squares
Levmar:Levenberg-Marquardt非线性最小二乘算法
Abstract.Levmar is GPL native ANSI C implementations of the Levenberg-Marquardt optimization algorithm.The blog focus on the compilation of levmar on Windows with Visual Studio.
Key Words.Levmar, C, LM least squares
1. levmar简介
Gauss-Newton算法是一个古老的处理非线性最小二乘问题的方法。该方法在迭代过程中要求矩阵J(x)满秩。为了克服这个困难,Levenberg(1944)提出了一种新的方法,但未受到重视。后来Marquardt(1963)又重新提出,并在理论上进行了控讨,得到Levenberg-Marquardt方法,简称LM方法。在此基础上,Fletcher(1971)对其实现策略进行了改进,得到了Levenberg-Marquardt-Fletcher方法(LMF)。再后来,More(1978)将LM方法与信赖域方法结合,建立了带信赖域的LM方法。
LM算法的产生主要是解决曲线最小二乘拟合问题,现在很多软件使用LM算法来解决通用的曲线拟合问题。
本文主要介绍GPL开源库levmar2.6使用Visual Studio在Windows上进行编译。这个开源库的官方网站是: http://users.ics.forth.gr/~lourakis/levmar/
2. 编译levmar
下载源码levmar-2.6解压,在其README.txt中对levmar的授权GPL、编译等进行了说明。在Windows操作系统中,可以使用nmake /f Makefile.vc来编译levmar和一个示例程序。
从官网介绍可知,levmar有些算法依赖LAPACK库,一个线性代数计算开源库。所以如果要使用那些算法,编译的时候必须包含这个库。从示例程序的源文件lmdemo.c中可以看出,有些问题的求解是需要LAPACK库的,相关源码列出如下:
/* uncomment the appropriate line below to select a minimization problem */ problem= //0; // Rosenbrock function //1; // modified Rosenbrock problem //2; // Powell's function //3; // Wood's function 4; // Meyer's (reformulated) problem //5; // Osborne's problem //6; // helical valley function #ifdef HAVE_LAPACK //7; // Boggs & Tolle's problem 3 //8; // Hock - Schittkowski problem 28 //9; // Hock - Schittkowski problem 48 //10; // Hock - Schittkowski problem 51 #else // no LAPACK #ifdef _MSC_VER #pragma message("LAPACK not available, some test problems cannot be used") #else #warning LAPACK not available, some test problems cannot be used #endif // _MSC_VER #endif /* HAVE_LAPACK */ //11; // Hock - Schittkowski problem 01 //12; // Hock - Schittkowski modified problem 21 //13; // hatfldb problem //14; // hatfldc problem //15; // equilibrium combustion problem #ifdef HAVE_LAPACK //16; // Hock - Schittkowski modified #1 problem 52 //17; // Schittkowski modified problem 235 //18; // Boggs & Tolle modified problem #7 //19; // Hock - Schittkowski modified #2 problem 52 //20; // Hock - Schittkowski modified problem #76" #endif /* HAVE_LAPACK */ switch(problem){ default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem); exit(1); break;
从上述源码可知,如果LAPACK库不可用的时候,示例程序中的问题
l 7 Boggs & Tolle’s problem 3
l 8 Hock - Schittkowski problem 28
l 9 Hock - Schittkowski problem 48
l 10 Hock - Schittkowski problem 51
l 16 Hock - Schittkowskit modified #1 problem 52
l 17 Schittkowski modified problem 235
l 18 Boggs & Tolle modified problem #7
l 19 Hock - Schittkowski modified #2 problem 52
l 20 Hock - Schittkowski modified probem #76
这些问题的求解功能是不能使用的。从头文件levmar.h中要以看出,
#ifdef LM_DBL_PREC /* double precision LM, with & without Jacobian */ /* unconstrained minimization */ extern int dlevmar_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, int itmax, double *opts, double *info, double *work, double *covar, void *adata); extern int dlevmar_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, int itmax, double *opts, double *info, double *work, double *covar, void *adata); /* box-constrained minimization */ extern int dlevmar_bc_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *dscl, int itmax, double *opts, double *info, double *work, double *covar, void *adata); extern int dlevmar_bc_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *dscl, int itmax, double *opts, double *info, double *work, double *covar, void *adata); #ifdef HAVE_LAPACK /* linear equation constrained minimization */ extern int dlevmar_lec_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *A, double *b, int k, int itmax, double *opts, double *info, double *work, double *covar, void *adata); extern int dlevmar_lec_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *A, double *b, int k, int itmax, double *opts, double *info, double *work, double *covar, void *adata); /* box & linear equation constrained minimization */ extern int dlevmar_blec_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *A, double *b, int k, double *wghts, int itmax, double *opts, double *info, double *work, double *covar, void *adata); extern int dlevmar_blec_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *A, double *b, int k, double *wghts, int itmax, double *opts, double *info, double *work, double *covar, void *adata); /* box, linear equations & inequalities constrained minimization */ extern int dlevmar_bleic_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *A, double *b, int k1, double *C, double *d, int k2, int itmax, double *opts, double *info, double *work, double *covar, void *adata); extern int dlevmar_bleic_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *A, double *b, int k1, double *C, double *d, int k2, int itmax, double *opts, double *info, double *work, double *covar, void *adata); /* box & linear inequality constraints */ extern int dlevmar_blic_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *C, double *d, int k2, int itmax, double opts[4], double info[LM_INFO_SZ], double *work, double *covar, void *adata); extern int dlevmar_blic_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *lb, double *ub, double *C, double *d, int k2, int itmax, double opts[5], double info[LM_INFO_SZ], double *work, double *covar, void *adata); /* linear equation & inequality constraints */ extern int dlevmar_leic_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *A, double *b, int k1, double *C, double *d, int k2, int itmax, double opts[4], double info[LM_INFO_SZ], double *work, double *covar, void *adata); extern int dlevmar_leic_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *A, double *b, int k1, double *C, double *d, int k2, int itmax, double opts[5], double info[LM_INFO_SZ], double *work, double *covar, void *adata); /* linear inequality constraints */ extern int dlevmar_lic_der( void (*func)(double *p, double *hx, int m, int n, void *adata), void (*jacf)(double *p, double *j, int m, int n, void *adata), double *p, double *x, int m, int n, double *C, double *d, int k2, int itmax, double opts[4], double info[LM_INFO_SZ], double *work, double *covar, void *adata); extern int dlevmar_lic_dif( void (*func)(double *p, double *hx, int m, int n, void *adata), double *p, double *x, int m, int n, double *C, double *d, int k2, int itmax, double opts[5], double info[LM_INFO_SZ], double *work, double *covar, void *adata); #endif /* HAVE_LAPACK */ #endif /* LM_DBL_PREC */
从头文件levmar.h中的代码可以看出,在#ifdef HAVE_LAPACK和#endif /* HAVE_LAPACK */之间的函数都是不可用的。除此之外的函数是可用的,如基本的dlevmar_der和dlevmar_dif等函数是不依赖LAPACK库的。如果只使用这几个函数,则可以不用配置LAPACK库,编译levmar就很简单了。
如果不使用LAPACK库,可以先在头文件levmar.h中把#define HAVE_LAPACK 这一行注释掉:
然后再修改Makefile.vc文件,在Makefile.vc中可以看到如下图所示一句注释,即当不使用LAPACK库是,把那一行注释掉(前面加#):
这时就可以启动Visual Studio的编译器CL来编译levmar库了。配置好编译环境的命令 工具 从Visual Studio的菜单来启动:
要编译32位的levmar库,可以使用x86的命令工具,要编译64位的levmar,可以使用x64的命令工具。启动命令工具后,切换到levmar源码文件夹,并输入命令
nmake /f Makefile.vc
如下图所示:
编译成功生成levmar.lib和lmdemo.exe说明编译成功了。
接着在命令窗口中运行lmdemo.exe,测试levmar例子程序。如果lmdemo正常运行,说明levmar已经成功编译。
自己的程序如果要使用levmar,就可以像使用其他开源库一样,设置头文件路径及库levmar.lib的路径,就可以使用了。
为了方便大家在移动端也能看到我的博文和讨论交流,现已注册微信公众号,欢迎大家扫描下方二维码关注。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- OpenShot 2.5.1 发布,非线性视频编辑器
- 非线性动力学特辑 - 低维到高维的联通者
- 通俗易懂--决策树算法、随机森林算法讲解(算法+案例)
- 限流算法之漏桶算法、令牌桶算法
- 什么是Paxos算法?Paxos算法是区块链核心算法之一
- 一文读懂对称加密算法、非对称加密算法和Hash算法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Servlet与JSP核心编程
[美]Marty Hall、Larry Brown、Yaakov Chalkin / 胡书敏 / 2009-6 / 68.00元
《Servlet与JSP核心编程(第2卷 第2版)》在第l卷的基础上,广泛涉及自定义标签库、过滤器、声明式安全、JSTL和Struts等主题,并沿袭深受读者喜爱的写作风格,通过完整、有效、资料丰富的程序来演绎目前最流行的技术和最佳实践。Java EE已经成为电子商务网站、动态网站和Web应用与服务开发的首选,作为这一平台的基础,servlet与JSP的重要性日益突出,并在极短的时间内得以迅速普及。......一起来看看 《Servlet与JSP核心编程》 这本书的介绍吧!