研究人员训练 AI 识别人的脚步

栏目: 软件资讯 · 发布时间: 6年前

你可能听说过指纹扫描,虹膜扫描,甚至眼睛注视扫描,但是基于脚步的生物识别技术呢?在预印本服务器 arxiv.org 上发表的一项新研究调查了人工智能(AI)在仅凭脚印识别一个人的使用。

研究人员训练 AI 识别人的脚步

德里印度理工学院的研究人员发表了论文《使用足部产生的地震信号进行人员识别》,它基于雾计算架构,该架构采用边缘设备来执行大部分计算,存储和涉及数据收集的沟通。 (该团队指出,这可以通过最小化带宽和能源需求来降低成本。)

“(通过我们的方法),个人只需要通过传感器的活动区域。人类识别系统在各个领域都有重要的应用。”

系统由三部分组成:物体(传感器与低端处理器配对,嵌入式处理器与收发器配对);雾(嵌入式处理器和收发器);和云(服务器)。

研究人员训练 AI 识别人的脚步

物质层,在此实施中由Raspberry Pi Zero——地震检波器(将地面运动转换为电压的地面运动传感器)和远程收发器模块组成,自动提取代表人流量的地震信号部分并在将其通过 ZigBee 发送到雾层之前压缩它。雾层——一个Raspberry Pi 3模型B - 接收足迹信号,解压缩它,从中提取重要特征,并在将信号通过以太网或Wi-Fi传递到云之前对信号进行分类。最后,云执行推理。

为了训练机器学习模型,使其能够区分不同的足迹(以及人),研究人员除了长度和节奏(两个连续的脚步之间的间隔)之外,还收集了脚步的时间和频率。该团队声称,在一个月内,他们使用地震检波器从8名赤脚测试参与者那里收集了大约46,000个足迹——这是同类中最大的数据集。

他们认为,在现实世界中,最好将“监控区域”(如大学或工厂)划分为“区域”(工厂楼层、部门)和子区域(房间、医院病房)来完成数据收集。

在模型训练过程中,研究小组发现,每次大约需要875步——大约8分钟的步行——才能达到85%以上的准确率,但他们的结果最终超过了基线。在测试过程中,表现最好的人工智能系统能达到 92.29%的准确率,而且是从7个连续的足迹中。

该系统的一个显著缺点是无法同时识别两个或两个以上的人,这会使系统混乱。研究人员将这个问题留给了未来的工作,但相信当前的迭代,可以可靠地用于登记教室或车间出勤,检测入侵者,以及控制家用电器。

论文中写道:“这种生物识别系统的主要优点是,地震传感器可以很容易地伪装起来;脚步模式是独一无二的,所以无法回避检测;不侵犯个人隐私;对环境参数不那么敏感,超出了个人解码和制造原始信号的能力。”


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Invisible Users

Invisible Users

Jenna Burrell / The MIT Press / 2012-5-4 / USD 36.00

The urban youth frequenting the Internet cafes of Accra, Ghana, who are decidedly not members of their country's elite, use the Internet largely as a way to orchestrate encounters across distance and ......一起来看看 《Invisible Users》 这本书的介绍吧!

html转js在线工具
html转js在线工具

html转js在线工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具