内容简介:Implementation of the estimation of model size and flop counts for convolutional neural networks with MXNET-Scala.For now, the estimation of flops only consider Layers: Convolution, Deconvolution, FullyConnected, Pooling, relu
MXNET-Scala Useful Tools
Implementation of the estimation of model size and flop counts for convolutional neural networks with MXNET-Scala.
https://github.com/albanie/convnet-burden
For now, the estimation of flops only consider Layers: Convolution, Deconvolution, FullyConnected, Pooling, relu
Building
Tested on Ubuntu 14.04
Requirements
- sbt 0.13
- Mxnet
steps
1, compile Mxnet with CUDA, then compile the scala-pkg;
2,
cd Mxnet-Scala/UsefulTools mkdir lib
3, copy your compiled mxnet-full_2.11-linux-x86_64-gpu-1.3.1-SNAPSHOT.jar
into lib folder;
4, run sbt, compile the project
Running
run cal_flops.sh
under scripts folder
caffenet flops: 723.0072 MFLOPS model size: 232.56387 MB squeezenet1-0 flops: 861.60394 MFLOPS model size: 4.7623596 MB resnet-101 flops: 7818.2407 MFLOPS model size: 170.28586 MB resnext-101-64x4d flops: 15491.882 MFLOPS model size: 319.13058 MB
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 实现估算 MXNET 卷积神经网络浮点数运算量 Python 版本
- 卷积有多少种?一文读懂深度学习中的各种卷积
- ChannelNets: 省力又讨好的channel-wise卷积,在channel维度进行卷积滑动 | NIPS 2018
- 卷积神经网络介绍
- 卷积神经网络随记
- 数学小记之卷积
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Design Accessible Web Sites
Jeremy Sydik / Pragmatic Bookshelf / 2007-11-05 / USD 34.95
It's not a one-browser web anymore. You need to reach audiences that use cell phones, PDAs, game consoles, or other "alternative" browsers, as well as users with disabilities. Legal requirements for a......一起来看看 《Design Accessible Web Sites》 这本书的介绍吧!