算法学习之股票预测

栏目: 数据库 · 发布时间: 6年前

内容简介:学了好长时间的机器学习一直找不到实践的机会,工作上的场景都被算法大拿们占据了,小菜鸟只能自谋出路。恰逢前些时中概股大跌,损失惨重,一怒之下干脆研究研究能否用机器学习来搞搞了。历史股价数据可以从雅虎金融上获取,而且已经有现成的python lib来做这个。跳跃一下先把周边的工具准备完毕,有了股票预测数据之后一般都要打印一个预测和真实数据的对比图,这个可以用matplotlib.pyplot搞定。

动机

学了好长时间的机器学习一直找不到实践的机会,工作上的场景都被算法大拿们占据了,小菜鸟只能自谋出路。恰逢前些时中概股大跌,损失惨重,一怒之下干脆研究研究能否用机器学习来搞搞了。  

数据获取

历史股价数据可以从雅虎金融上获取,而且已经有现成的python lib来做这个。

import pandas_datareader.data as reader
import fix_yahoo_finance as yf

def fetch_stock_list_from_web():
    global COMPANIES
    COMPANIES = pd.read_csv(SP500_LIST_PATH)

    if _data_already_loaded():
        return

    yf.pdr_override()
    for cell in COMPANIES['Symbol']:
        try:
            data = reader.get_data_yahoo(cell)
            data.to_csv('./stock_data/' + cell + '.csv')
        except Exception as e:
            print(e)

其中SP500_LIST_PATH=‘ constituents.csv ’ 这个google一下就能找到。

打印预测结果

跳跃一下先把周边的 工具 准备完毕,有了股票预测数据之后一般都要打印一个预测和真实数据的对比图,这个可以用matplotlib.pyplot搞定。

mport matplotlib.pyplot as plt

def _print_comparison_gui(pred, real):
    truths = _flatten(real)[-200:]
    preds = _flatten(pred)[-200:]
    days = range(len(truths))[-200:]

    plt.figure(figsize=(12, 6))
    plt.plot(days, truths, label='truth')
    plt.plot(days, preds, label='pred')
    plt.legend(loc='upper left', frameon=False)
    plt.xlabel("day")
    plt.ylabel("normalized price")
    plt.ylim((min(preds), max(truths)))
    plt.grid(ls='--')
    plt.show()

naive版本

预测股价的模型应该是怎样的呢?初始想法是把股价表达成时间的函数,因为某些时间具有特殊性比如周五,年底等等,所以把时间拆成年,月,日而不是作为一个整体,其实我们预测股价的时候一般会看公司的基本面,大环境,一些相关消息等等,但搞定这些东西还远超出我的能力所以就先忽略了。最终x是(year, month, day, day_of_week), y就是price。

def preprocess_data(symbols):
    global PROCESSED_STOCK_DATA

    for i in range(len(symbols)):
        symbol = symbols[i]
        print('Loading ' + symbol)
        price = ORIGINAL_STOCK_DATA[symbol]['Open']
        price = list(map(lambda each: [each],price))
        date = list(map(lambda each: datetime.datetime.strptime(each, '%Y-%m-%d'), ORIGINAL_STOCK_DATA[symbol]['Date']))
        x = list(map(lambda each: (each.year, each.month, each.day, each.weekday()), date))

        train_size = int(len(x) * (1.0 - TEST_RATIO))
        train_X, test_X = x[:train_size], x[train_size:]
        train_y, test_y = price[:train_size], price[train_size:]

        PROCESSED_STOCK_DATA[symbol] = (train_X, train_y, test_X, test_y)

模型选择了一个简单的神经网络,

def build_model(x):
    L1 = 30
    w1 = tf.Variable(tf.random_uniform([INPUT_VARIABLE_COUNT, L1], 0, 1))
    b1 = tf.Variable(tf.zeros([1, L1]))
    wb1 = tf.matmul(x, w1) + b1
    layer1 = tf.nn.relu(wb1)

    L2 = 40
    w2 = tf.Variable(tf.random_uniform([L1, L2], 0, 1))
    b2 = tf.Variable(tf.zeros([1, L2]))
    wb2 = tf.matmul(layer1, w2) + b2
    layer2 = tf.nn.relu(wb2)

    w3 = tf.Variable(tf.random_uniform([L2, 1], 0, 1))
    b3 = tf.Variable(tf.zeros([1, 1]))
    wb3 = tf.matmul(layer2, w3) + b3

    return wb3

可惜一跑就杯具了,跑了一小会所有的预测值就都在12上下跳动了,感觉像是梯度消失只好搬出batchnorm来救场,

def build_model(x, is_test, iteration):
    L1 = 30
    w1 = tf.Variable(tf.random_uniform([INPUT_VARIABLE_COUNT, L1], 0, 1))
    S1 = tf.Variable(tf.ones([L1]))
    b1 = tf.Variable(tf.zeros([1, L1]))
    wb1 = tf.matmul(x, w1) + b1
    Y1bn, update_ema1 = batchnorm(wb1, b1, S1, is_test, iteration)
    layer1 = tf.nn.relu(Y1bn)

    L2 = 40
    w2 = tf.Variable(tf.random_uniform([L1, L2], 0, 1))
    S2 = tf.Variable(tf.ones([L2]))
    b2 = tf.Variable(tf.zeros([1, L2]))
    wb2 = tf.matmul(layer1, w2) + b2
    Y2bn, update_ema2 = batchnorm(wb2, b2, S2, is_test, iteration)
    layer2 = tf.nn.relu(Y2bn)

    w3 = tf.Variable(tf.random_uniform([L2, 1], 0, 1))
    b3 = tf.Variable(tf.zeros([1, 1]))
    wb3 = tf.matmul(layer2, w3) + b3
    update_ema = tf.group(update_ema1, update_ema2)

    return wb3, update_ema

最终拿到的结果是这样的,

算法学习之股票预测

感觉相当的不靠谱,程序似乎学到了一点大的趋势,但在基准值和连续性上面都差距较大。连续性差感觉可能是变量不够,网络层次太浅,可惜加大层数后在我的macbook pro上面跑了一晚上也没有一点要收敛的样子,只能放弃了。

LSTM版本

回想一下股价预测的方法中有一个流派叫技术分析也就是看k线图,这个似乎比较符合我现在只有股价做输入的状况,而k线图不就是和LSTM模型的场景一样一样的么?不过从头写一个LSTM还是有点超出本菜鸟的能力了,所以就在别人的基础上改吧,借鉴了 使用rnn预测股票价格

rnn文章里面用的面向对象编程风格,而且把训练过程和测试过程放到一起,都让程序的理解难度加大了,所以我改写成了简单的过程式风格而且分开了训练和测试过程。 

一些要点

1. LSTM版本除了模型不一样之外比较重要的是对股价做了规范化处理,把绝对股价换算成股价变动百分比,这样就不会碰到预测不出训练时没训练过的股价的问题了。

data = [data[0] / data[0][0] - 1.0] + [
            curr / data[i][-1] - 1.0 for i, curr in enumerate(data[1:])]

2. 数据预处理的时候有INPUT_SIZE的概念,就是把连续几天的股价作为一个向量输入,这样更能体现股价变化的特征

data = [np.array(data[i * INPUT_SIZE: (i + 1) * INPUT_SIZE])
                for i in range(len(data) // INPUT_SIZE)]

3. 预测的模型实际上是用连续多天(比如30天)的股价预测后面一天的股价,所以x和y是下面的样子

X = np.array([data[i: i + NUMBER_OF_STEPS] for i in range(len(data) - NUMBER_OF_STEPS)])
        y = np.array([data[i + NUMBER_OF_STEPS] for i in range(len(data) - NUMBER_OF_STEPS)])

4. rnn文章对股票价格的input还做了一个向量转换( tf.nn.embedding_lookup ),但我实际测试的结果不理想,而且感觉做了数据规范化以后的股价已经是向量了,似乎没必要再做一层转换,所以我的模型是这样的

def build_model(symbols,inputs,keep_prob):
    def _create_one_cell():
        lstm_cell = tf.contrib.rnn.LSTMCell(LSTM_SIZE, state_is_tuple=True)
        lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return lstm_cell

    cell = tf.contrib.rnn.MultiRNNCell(
        [_create_one_cell() for _ in range(NUMBER_OF_LAYERS)],
        state_is_tuple=True
    ) if NUMBER_OF_LAYERS > 1 else _create_one_cell()

    # Run dynamic RNN
    val, state_ = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32, scope="dynamic_rnn")
    # Before transpose, val.get_shape() = (batch_size, num_steps, lstm_size)
    # After transpose, val.get_shape() = (num_steps, batch_size, lstm_size)
    val = tf.transpose(val, [1, 0, 2])
    # 这里取向量的最后一位也就是最后一个step对应的数据,也就是模型预测的股票数据,也解释了为啥要用transpose
    last = tf.gather(val, int(val.get_shape()[0]) - 1, name="lstm_state")
    ws = tf.Variable(tf.truncated_normal([LSTM_SIZE, INPUT_SIZE]), name="w")
    bias = tf.get_variable("b", [INPUT_SIZE])
    pred = tf.matmul(last, ws) + bias
    return pred, cell

结果

算法学习之股票预测

从上面的图来看,预测结果还是有点靠谱的,有几个较大的波动都给预测出来了。当然如果真的拿这个去炒股我还是不敢的:)

代码

import pandas_datareader.data as reader
import fix_yahoo_finance as yf
import numpy as np
import os
import pandas as pd
import random
import tensorflow as tf
import matplotlib.pyplot as plt


SP500_LIST_PATH = './stock_data/constituents.csv'
DATA_PATH = './stock_data'
CHECK_POINTS_PATH = "./checkpoints/stock_check_points"
TRAIN_STOCK_LIST = ['AAPL','AMZN','GOOG','FB','MSFT','NFLX','NVDA','ORCL']
#TRAIN_STOCK_LIST = ['AAPL']


COMPANIES = None
ORIGINAL_STOCK_DATA = {}
PROCESSED_STOCK_DATA = {}

INPUT_SIZE = 5
# 可以理解成序列长度
NUMBER_OF_STEPS = 30
LSTM_SIZE = 128
EMBED_SIZE = 128
NUMBER_OF_LAYERS = 2
STOCK_COUNT = 10
MAX_EPOCH = 50000
INIT_EPOCH = 5

LEARNING_RATE_BASE = 0.001
LEARNING_RATE_DECAY_STEP = 1000
LEARNING_RATE_DECAY_RATE = 0.95

INIT_LEARNING_RATE = 0.001
LEARNING_RATE_DECAY = 0.99

TEST_RATIO = 0.1
BATCH_SIZE = 64
KEEP_PROB = 0.8
SAVE_STEP = 1000


def _data_already_loaded():
    dirs = os.listdir(DATA_PATH)
    if dirs and len(dirs) > 100:
        return True
    else:
        return False


def fetch_stock_list_from_web():
    global COMPANIES
    COMPANIES = pd.read_csv(SP500_LIST_PATH)

    if _data_already_loaded():
        return

    yf.pdr_override()
    for cell in COMPANIES['Symbol']:
        try:
            data = reader.get_data_yahoo(cell)
            data.to_csv('./stock_data/' + cell + '.csv')
        except Exception as e:
            print(e)


def load_stock_data():
    global ORIGINAL_STOCK_DATA
    for cell in COMPANIES['Symbol']:
        csv_file = './stock_data/' + cell + '.csv'
        if not (os.path.exists(csv_file)):
            continue
        csv_data = pd.read_csv(csv_file)
        ORIGINAL_STOCK_DATA[cell] = csv_data


def preprocess_data(symbols):
    global PROCESSED_STOCK_DATA

    for symbol in symbols:
        print('Loading ' + symbol)
        data = ORIGINAL_STOCK_DATA[symbol]['Open']
        # 按input_size进行拆分
        data = [np.array(data[i * INPUT_SIZE: (i + 1) * INPUT_SIZE])
                for i in range(len(data) // INPUT_SIZE)]
        # 计算相对增量,注意后面的for里面i是从0开始的
        data = [data[0] / data[0][0] - 1.0] + [
            curr / data[i][-1] - 1.0 for i, curr in enumerate(data[1:])]

        X = np.array([data[i: i + NUMBER_OF_STEPS] for i in range(len(data) - NUMBER_OF_STEPS)])
        y = np.array([data[i + NUMBER_OF_STEPS] for i in range(len(data) - NUMBER_OF_STEPS)])

        train_size = int(len(X) * (1.0 - TEST_RATIO))
        train_X, test_X = X[:train_size], X[train_size:]
        train_y, test_y = y[:train_size], y[train_size:]

        PROCESSED_STOCK_DATA[symbol] = (train_X, train_y, test_X, test_y)


def _generate_batch(symbol):
    train_X, train_y, test_X, test_y = PROCESSED_STOCK_DATA[symbol]
    num_batches = int(len(train_X)) // BATCH_SIZE
    if BATCH_SIZE * num_batches < len(train_X):
        num_batches += 1

    batch_indices = list(range(num_batches))
    random.shuffle(batch_indices)
    for j in batch_indices:
        batch_X = train_X[j * BATCH_SIZE: (j + 1) * BATCH_SIZE]
        batch_y = train_y[j * BATCH_SIZE: (j + 1) * BATCH_SIZE]
        assert set(map(len, batch_X)) == {NUMBER_OF_STEPS}
        yield batch_X, batch_y


def build_model(symbols,inputs,keep_prob):
    def _create_one_cell():
        lstm_cell = tf.contrib.rnn.LSTMCell(LSTM_SIZE, state_is_tuple=True)
        lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return lstm_cell

    cell = tf.contrib.rnn.MultiRNNCell(
        [_create_one_cell() for _ in range(NUMBER_OF_LAYERS)],
        state_is_tuple=True
    ) if NUMBER_OF_LAYERS > 1 else _create_one_cell()


    # embed_matrix = tf.Variable(
    #     tf.random_uniform([STOCK_COUNT, EMBED_SIZE], -1.0, 1.0),
    #     name="embed_matrix"
    # )

    # 对embedding lookup的效果比较怀疑
    # stock_label_embeds.shape = (batch_size, embedding_size)
    # stacked_symbols = tf.tile(symbols, [1, NUMBER_OF_STEPS], name='stacked_stock_labels')
    # stacked_embeds = tf.nn.embedding_lookup(embed_matrix, stacked_symbols)

    # After concat, inputs.shape = (batch_size, num_steps, input_size + embed_size)
    #inputs_with_embed = tf.concat([inputs, stacked_embeds], axis=2, name="inputs_with_embed")

    inputs_with_embed = tf.identity(inputs)

    print("inputs.shape:", inputs.shape)
    print("inputs_with_embed.shape:", inputs_with_embed.shape)

    # Run dynamic RNN
    val, state_ = tf.nn.dynamic_rnn(cell, inputs_with_embed, dtype=tf.float32, scope="dynamic_rnn")
    # Before transpose, val.get_shape() = (batch_size, num_steps, lstm_size)
    # After transpose, val.get_shape() = (num_steps, batch_size, lstm_size)
    val = tf.transpose(val, [1, 0, 2])
    # 这里取向量的最后一位也就是最后一个step对应的数据,也就是模型预测的股票数据,也解释了为啥要用transpose
    last = tf.gather(val, int(val.get_shape()[0]) - 1, name="lstm_state")
    ws = tf.Variable(tf.truncated_normal([LSTM_SIZE, INPUT_SIZE]), name="w")
    bias = tf.get_variable("b", [INPUT_SIZE])
    pred = tf.matmul(last, ws) + bias
    return pred, cell


def train():
    print('start training ...')

    learning_rate = tf.placeholder(tf.float32, None, name="learning_rate")
    keep_prob = tf.placeholder(tf.float32, None, name="keep_prob")

    # Stock symbols are mapped to integers.
    symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')

    inputs = tf.placeholder(tf.float32, [None, NUMBER_OF_STEPS, INPUT_SIZE], name="inputs")
    targets = tf.placeholder(tf.float32, [None, INPUT_SIZE], name="targets")

    pred, cell = build_model(symbols,inputs,keep_prob)

    # 方差损失
    loss = tf.reduce_mean(tf.square(pred - targets), name="loss_mse_train")
    global_step = tf.Variable(0, trainable=False)
    add_global_step = global_step.assign_add(1)

    trainable_variables = tf.trainable_variables()
    grads, a = tf.clip_by_global_norm(tf.gradients(loss, trainable_variables), 5) # prevent loss divergence caused by gradient explosion
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step=global_step,
                                               decay_steps=LEARNING_RATE_DECAY_STEP, decay_rate=LEARNING_RATE_DECAY_RATE)
    optimizer = tf.train.AdamOptimizer(learning_rate)
    optim = optimizer.apply_gradients(zip(grads, trainable_variables))

    #optim = tf.train.RMSPropOptimizer(learning_rate).minimize(loss, name="rmsprop_optim")


    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        if not os.path.exists(CHECK_POINTS_PATH):
            os.makedirs(CHECK_POINTS_PATH)

        check_point = tf.train.get_checkpoint_state(CHECK_POINTS_PATH)
        # if have checkPoint, restore checkPoint
        if check_point and check_point.model_checkpoint_path:
            saver.restore(sess, check_point.model_checkpoint_path)
            print("restored %s" % check_point.model_checkpoint_path)
        else:
            print("no checkpoint found!")

        g_step = 0
        for epoch in range(MAX_EPOCH):
            epoch_step = 0
            each_turn_learning_rate = INIT_LEARNING_RATE * (
                    LEARNING_RATE_DECAY ** max(float(epoch + 1 - INIT_EPOCH), 0.0)
            )

            for label_, d_ in PROCESSED_STOCK_DATA.items():
                label_pos = list(PROCESSED_STOCK_DATA.keys()).index(label_)
                for batch_x, batch_y in _generate_batch(label_):
                    g_step += 1
                    epoch_step += 1
                    batch_labels = np.array([[label_pos]] * len(batch_x))
                    train_data_feed = {
                        learning_rate: each_turn_learning_rate,
                        keep_prob: KEEP_PROB,
                        inputs: batch_x,
                        targets: batch_y,
                        symbols: batch_labels,
                    }
                    train_loss, train_pred, _, _ = sess.run(
                        [loss, pred, optim, add_global_step], train_data_feed)

                    print("epoch: %d, steps: %d, loss: %3f" % (epoch + 1, epoch_step, train_loss))
                    # save and test
                    if g_step % SAVE_STEP == SAVE_STEP - 1: # prevent save at the beginning
                        print("save model")
                        saver.save(sess, os.path.join(CHECK_POINTS_PATH, 'stock.model'), global_step=g_step)


def test():
    print('start test ...')

    learning_rate = tf.placeholder(tf.float32, None, name="learning_rate")
    keep_prob = tf.placeholder(tf.float32, None, name="keep_prob")

    # Stock symbols are mapped to integers.
    symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')

    inputs = tf.placeholder(tf.float32, [None, NUMBER_OF_STEPS, INPUT_SIZE], name="inputs")
    targets = tf.placeholder(tf.float32, [None, INPUT_SIZE], name="targets")

    pred, cell = build_model(symbols,inputs,keep_prob)

    # 方差损失
    loss = tf.reduce_mean(tf.square(pred - targets), name="loss_mse_train")

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        check_point = tf.train.get_checkpoint_state(CHECK_POINTS_PATH)
        # if have checkPoint, restore checkPoint
        if check_point and check_point.model_checkpoint_path:
            saver.restore(sess, check_point.model_checkpoint_path)
            print("restored %s" % check_point.model_checkpoint_path)
        else:
            print("no checkpoint found!")
            exit(1)

        for label_, d_ in PROCESSED_STOCK_DATA.items():
            label_pos = list(PROCESSED_STOCK_DATA.keys()).index(label_)
            a, b, test_x, test_y = PROCESSED_STOCK_DATA[label_]

            batch_labels = np.array([[label_pos]] * len(test_x))
            test_data_feed = {
                learning_rate: 0.0,
                keep_prob: 1.0,
                inputs: test_x,
                targets: test_y,
                symbols: batch_labels,
            }

            test_loss, test_pred = sess.run(
                [loss,pred], test_data_feed)

            print("stock: %s, loss: %3f" % (label_, test_loss))
            _print_comparison_gui(test_pred, test_y, label_)
            _print_comparison_text(test_pred, test_y)

        # writer=tf.summary.FileWriter('./logs',sess.graph)
        # writer.close()

# 把数据打印出来试试
def _print_comparison_gui(pred, real, stock_sym):
    truths = _flatten(real)[-200:]
    preds = 1 * (_flatten(pred)[-200:])
    days = range(len(truths))[-200:]

    plt.figure(figsize=(12, 6))
    plt.plot(days, truths, label='truth')
    plt.plot(days, preds, label='pred')
    plt.legend(loc='upper left', frameon=False)
    plt.xlabel("day")
    plt.ylabel("normalized price")
    plt.ylim((min(truths), max(truths)))
    plt.grid(ls='--')
    plt.title(stock_sym + " | Last %d days in test" % len(truths))
    plt.show()


def _print_comparison_text(pred, real):
    pred = _flatten(pred)
    real = _flatten(real)
    for each in pred:
        print("%5f" % each, end=' ')
    print('')
    print('')
    for each in real:
        print("%5f" % each, end=' ')
    print('')
    print('')

def _flatten(seq):
    return np.array([x for y in seq for x in y])

fetch_stock_list_from_web()
load_stock_data()
preprocess_data(TRAIN_STOCK_LIST)
#train()
test()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

ARM嵌入式系统开发

ARM嵌入式系统开发

斯洛斯 / 北京航大 / 2005-5 / 75.00元

《ARM嵌入式系统开发:软件设计与优化》从软件设计的角度,全面、系统地介绍了ARM处理器的基本体系结构和软件设计与优化方法。内容包括:ARM处理器基础;ARM/Thumb指令集;C语言与汇编语言程序的设计与优化;基本运算、操作的优化;基于ARM的DSP;异常与中断处理;固件与嵌入式OS;cache与存储器管理;ARMv6体系结构的特点等。全书内容完整,针对各种不同的ARM内核系统结构都有详尽论述,......一起来看看 《ARM嵌入式系统开发》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具