内容简介:李成熙,腾讯云高级工程师。2014年度毕业加入腾讯AlloyTeam,先后负责过QQ群、花样直播、腾讯文档等项目。2018年加入腾讯云云开发团队。专注于性能优化、工程化和小程序服务。微博 |在掘金开发者大会上,在推荐实践那里,我有提到一种云函数的用法,我们可以将相同的一些操作,比如用户管理、支付逻辑,按照业务的相似性,归类到一个云函数里,这样比较方便管理、排查问题以及逻辑的共享。甚至如果你的小程序的后台逻辑不复杂,请求量不是特别大,完全可以在云函数里面做一个单一的微服务,根据路由来处理任务。用下面三幅图可
李成熙,腾讯云高级工程师。2014年度毕业加入腾讯AlloyTeam,先后负责过QQ群、花样直播、腾讯文档等项目。2018年加入腾讯云云开发团队。专注于性能优化、工程化和小程序服务。微博 | 知乎 | Github
概念回顾
在掘金开发者大会上,在推荐实践那里,我有提到一种云函数的用法,我们可以将相同的一些操作,比如用户管理、支付逻辑,按照业务的相似性,归类到一个云函数里,这样比较方便管理、排查问题以及逻辑的共享。甚至如果你的小程序的后台逻辑不复杂,请求量不是特别大,完全可以在云函数里面做一个单一的微服务,根据路由来处理任务。
用下面三幅图可以概括,我们来回顾一下:
比如这里就是传统的云函数用法,一个云函数处理一个任务,高度解耦。
第二幅架构图就是尝试将请求归类,一个云函数处理某一类的请求,比如有专门负责处理用户的,或者专门处理支付的云函数。
最后一幅图显示这里只有一个云函数,云函数里有一个分派任务的路由管理,将不同的任务分配给不同的本地函数处理。
tcb-router
介绍及用法
为了方便大家试用,咱们腾讯云 Tencent Cloud Base 团队开发了 tcb-router ,云函数路由管理库方便大家使用。
那具体怎么使用 tcb-router
去实现上面提到的架构呢?下面我会逐一举例子。
架构一:一个云函数处理一个任务
这种架构下,其实不需要用到 tcb-router
,像普通那样写好云函数,然后在小程序端调用就可以了。
- 云函数
// 函数 router exports.main = (event, context) => { return { code: 0, message: 'success' }; };
- 小程序端
wx.cloud.callFunction({ name: 'router', data: { name: 'tcb', company: 'Tencent' } }).then((res) => { console.log(res); }).catch((e) => { console.log(e); });
架构二: 按请求给云函数归类
此类架构就是将相似的请求归类到同一个云函数处理,比如可以分为用户管理、支付等等的云函数。
- 云函数
// 函数 user const TcbRouter = require('tcb-router'); exports.main = async (event, context) => { const app = new TcbRouter({ event }); app.router('register', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'register success' } }); app.router('login', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'login success' } }); return app.serve(); }; // 函数 pay const TcbRouter = require('tcb-router'); exports.main = async (event, context) => { const app = new TcbRouter({ event }); app.router('makeOrder', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'make order success' } }); app.router('pay', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'pay success' } }); return app.serve(); };
- 小程序端
// 注册用户 wx.cloud.callFunction({ name: 'user', data: { $url: 'register', name: 'tcb', password: '09876' } }).then((res) => { console.log(res); }).catch((e) => { console.log(e); }); // 下单商品 wx.cloud.callFunction({ name: 'pay', data: { $url: 'makeOrder', id: 'xxxx', amount: '3' } }).then((res) => { console.log(res); }).catch((e) => { console.log(e); });
架构三:由一个云函数处理所有服务
- 云函数
// 函数 router const TcbRouter = require('tcb-router'); exports.main = async (event, context) => { const app = new TcbRouter({ event }); app.router('user/register', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'register success' } }); app.router('user/login', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'login success' } }); app.router('pay/makeOrder', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'make order success' } }); app.router('pay/pay', async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx) => { ctx.body = { code: 0, message: 'pay success' } }); return app.serve(); };
- 小程序端
// 注册用户 wx.cloud.callFunction({ name: 'router', data: { $url: 'user/register', name: 'tcb', password: '09876' } }).then((res) => { console.log(res); }).catch((e) => { console.log(e); }); // 下单商品 wx.cloud.callFunction({ name: 'router', data: { $url: 'pay/makeOrder', id: 'xxxx', amount: '3' } }).then((res) => { console.log(res); }).catch((e) => { console.log(e); });
借鉴 Koa2 的中间件机制实现云函数的路由管理
小程序·云开发的云函数目前更推荐 async/await
的玩法来处理异步操作,因此这里也参考了同样是基于 async/await
的 Koa2 的中间件实现机制。
从上面的一些例子我们可以看出,主要是通过 use
和 router
两种方法传入路由以及相关处理的中间件。
use
只能传入一个中间件,路由也只能是字符串,通常用于 use 一些所有路由都得使用的中间件
// 不写路由表示该中间件应用于所有的路由 app.use(async (ctx, next) => { }); app.use('router', async (ctx, next) => { });
router
可以传一个或多个中间件,路由也可以传入一个或者多个。
app.router('router', async (ctx, next) => { }); app.router(['router', 'timer'], async (ctx, next) => { await next(); }, async (ctx, next) => { await next(); }, async (ctx, next) => { });
不过,无论是 use
还是 router
,都只是将路由和中间件信息,通过 _addMiddleware
和 _addRoute
两个方法,录入到 _routerMiddlewares
该对象中,用于后续调用 serve
的时候,层层去执行中间件。
最重要的运行中间件逻辑,则是在 serve
和 compose
两个方法里。
serve
里主要的作用是做路由的匹配以及将中间件组合好之后,通过 compose
进行下一步的操作。比如以下这段节选的代码,其实是将匹配到的路由的中间件,以及 *
这个通配路由的中间件合并到一起,最后依次执行。
let middlewares = (_routerMiddlewares[url]) ? _routerMiddlewares[url].middlewares : []; // put * path middlewares on the queue head if (_routerMiddlewares['*']) { middlewares = [].concat(_routerMiddlewares['*'].middlewares, middlewares); }
组合好中间件后,执行这一段,将中间件 compose
后并返回一个函数,传入上下文 this
后,最后将 this.body
的值 resolve
,即一般在最后一个中间件里,通过对 ctx.body
的赋值,实现云函数的对小程序端的返回:
const fn = compose(middlewares); return new Promise((resolve, reject) => { fn(this).then((res) => { resolve(this.body); }).catch(reject); });
那么 compose
是怎么组合好这些中间件的呢?这里截取部份代码进行分析
function compose(middleware) { /** * ... 其它代码 */ return function (context, next) { // 这里的 next,如果是在主流程里,一般 next 都是空。 let index = -1; // 在这里开始处理处理第一个中间件 return dispatch(0); // dispatch 是核心的方法,通过不断地调用 dispatch 来处理所有的中间件 function dispatch(i) { if (i <= index) { return Promise.reject(new Error('next() called multiple times')); } index = i; // 获取中间件函数 let handler = middleware[i]; // 处理完最后一个中间件,返回 Proimse.resolve if (i === middleware.length) { handler = next; } if (!handler) { return Promise.resolve(); } try { // 在这里不断地调用 dispatch, 同时增加 i 的数值处理中间件 return Promise.resolve(handler(context, dispatch.bind(null, i + 1))); } catch (err) { return Promise.reject(err); } } } }
看完这里的代码,其实有点疑惑,怎么通过 Promise.resolve(handler(xxxx))
这样的代码逻辑可以推进中间件的调用呢?
首先,我们知道, handler
其实就是一个 async function
, next
,就是 dispatch.bind(null, i + 1)
比如这个:
async (ctx, next) => { await next(); }
而我们知道, dispatch
是返回一个 Promise.resolve
或者一个 Promise.reject
,因此在 async function
里执行 await next()
,就相当于触发下一个中间件的调用。
当 compose
完成后,还是会返回一个 function (context, next)
,于是就走到下面这个逻辑,执行 fn
并传入上下文 this
后,再将在中间件中赋值的 this.body
resolve
出来,最终就成为云函数数要返回的值。
const fn = compose(middlewares); return new Promise((resolve, reject) => { fn(this).then((res) => { resolve(this.body); }).catch(reject); });
看到 Promise.resolve
一个 async function
,许多人都会很困惑。其实撇除 next
这个往下调用中间件的逻辑,我们可以很好地将逻辑简化成下面这段示例:
let a = async () => { console.log(1); }; let b = async () => { console.log(2); return 3; }; let fn = async () => { await a(); return b(); }; Promise.resolve(fn()).then((res) => { console.log(res); }); // 输出 // 1 // 2 // 3
以上所述就是小编给大家介绍的《小程序·云开发的云函数路由高级玩法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- jsonp劫持入门玩法
- SkyWalking之高级玩法
- 【译】2019 JavaScript 新玩法
- PHP异步的的玩法
- Github 新玩法 -- Profile ReadMe
- Vue-loader 的巧妙玩法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算机程序设计艺术
Donald E.Knuth / 黄林鹏 / 机械工业出版社 / 2010-8 / 69.00元
《计算机程序设计艺术(第4卷·第0册):组合算法与布尔函数概论(双语版)》是《计算机程序设计艺术,第4卷:组合算法》的第0册。《计算机程序设计艺术(第4卷·第0册):组合算法与布尔函数概论(双语版)》介绍了组合搜索历史和演化,涉及组合搜索技术的理论和实践应用,探究了布尔函数相关的所有重要问题,考察了如何最有效地计算一个布尔函数的值的技术。本册是《计算机程序设计艺术的》第7章,即组合搜索一长篇宏论的......一起来看看 《计算机程序设计艺术》 这本书的介绍吧!