深度有趣 | 11 TensorFlow物体检测

栏目: 编程工具 · 发布时间: 6年前

内容简介:TensorFlow提供了用于检测图片或视频中所包含物体的API,详情可参考以下链接物体检测和图片分类不同

TensorFlow提供了用于检测图片或视频中所包含物体的API,详情可参考以下链接

github.com/tensorflow/…

物体检测和图片分类不同

  • 图片分类是将图片分为某一类别,即从多个可能的分类中选择一个,即使可以按照概率输出最可能的多个分类,但理论上的正确答案只有一个
  • 物体检测是检测图片中所出现的全部物体并且用矩形(Anchor Box)进行标注,物体的类别可以包括多种,例如人、车、动物、路标等,即正确答案可以是多个

通过多个例子,了解TensorFlow物体检测API的使用方法

这里使用预训练好的 ssd_mobilenet_v1_coco 模型(Single Shot MultiBox Detector),更多可用的物体检测模型可以参考这里

github.com/tensorflow/…

举个例子

加载库

# -*- coding: utf-8 -*-

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image

from utils import label_map_util
from utils import visualization_utils as vis_util
复制代码

定义一些常量

PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
复制代码

加载预训练好的模型

detection_graph = tf.Graph()
with detection_graph.as_default():
	od_graph_def = tf.GraphDef()
	with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
		od_graph_def.ParseFromString(fid.read())
		tf.import_graph_def(od_graph_def, name='')
复制代码

加载分类标签数据

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
复制代码

一个将图片转为数组的辅助函数,以及测试图片路径

def load_image_into_numpy_array(image):
	(im_width, im_height) = image.size
	return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
	
TEST_IMAGE_PATHS = ['test_images/image1.jpg', 'test_images/image2.jpg']
复制代码

使用模型进行物体检测

with detection_graph.as_default():
	with tf.Session(graph=detection_graph) as sess:
	    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
	    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
	    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
	    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
	    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
	    for image_path in TEST_IMAGE_PATHS:
	    	image = Image.open(image_path)
	    	image_np = load_image_into_numpy_array(image)
	    	image_np_expanded = np.expand_dims(image_np, axis=0)
	    	(boxes, scores, classes, num) = sess.run(
	    		[detection_boxes, detection_scores, detection_classes, num_detections], 
	    		feed_dict={image_tensor: image_np_expanded})
	    	
	    	vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
	    	plt.figure(figsize=[12, 8])
	    	plt.imshow(image_np)
	    	plt.show()
复制代码

检测结果如下,第一张图片检测出了两只狗狗

深度有趣 | 11 TensorFlow物体检测

第二张图片检测出了一些人和风筝

深度有趣 | 11 TensorFlow物体检测

摄像头检测

安装 OpenCV ,用于实现和计算机视觉相关的功能,版本为 3.3.0.10

pip install opencv-python opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
复制代码

查看是否安装成功,没有报错即可

import cv2
tracker = cv2.TrackerMedianFlow_create()
复制代码

在以上代码的基础上进行修改

cv2

完整代码如下

# -*- coding: utf-8 -*-

import numpy as np
import tensorflow as tf

from utils import label_map_util
from utils import visualization_utils as vis_util

import cv2
cap = cv2.VideoCapture(0)

PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90

detection_graph = tf.Graph()
with detection_graph.as_default():
	od_graph_def = tf.GraphDef()
	with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
		od_graph_def.ParseFromString(fid.read())
		tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

with detection_graph.as_default():
	with tf.Session(graph=detection_graph) as sess:
	    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
	    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
	    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
	    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
	    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
	    while True:
	    	ret, image_np = cap.read()
	    	image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
	    	image_np_expanded = np.expand_dims(image_np, axis=0)
	    	(boxes, scores, classes, num) = sess.run(
	    		[detection_boxes, detection_scores, detection_classes, num_detections], 
	    		feed_dict={image_tensor: image_np_expanded})
	    	
	    	vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
	    	
	    	cv2.imshow('object detection', cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
	    	if cv2.waitKey(25) & 0xFF == ord('q'):
	    		cap.release()
	    		cv2.destroyAllWindows()
	    		break
复制代码

视频检测

使用 cv2 读取视频并获取每一帧图片,然后将检测后的每一帧写入新的视频文件

生成的视频文件只有图像、没有声音,关于音频的处理以及视频和音频的合成,后面再进一步探索

完整代码如下

# -*- coding: utf-8 -*-

import numpy as np
import tensorflow as tf

from utils import label_map_util
from utils import visualization_utils as vis_util

import cv2
cap = cv2.VideoCapture('绝地逃亡.mov')
ret, image_np = cap.read()
out = cv2.VideoWriter('output.mov', -1, cap.get(cv2.CAP_PROP_FPS), (image_np.shape[1], image_np.shape[0]))

PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90

detection_graph = tf.Graph()
with detection_graph.as_default():
	od_graph_def = tf.GraphDef()
	with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
		od_graph_def.ParseFromString(fid.read())
		tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

with detection_graph.as_default():
	with tf.Session(graph=detection_graph) as sess:
	    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
	    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
	    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
	    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
	    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
	    while cap.isOpened():
	    	ret, image_np = cap.read()
	    	if len((np.array(image_np)).shape) == 0:
	    		break

	    	image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
	    	image_np_expanded = np.expand_dims(image_np, axis=0)
	    	
	    	(boxes, scores, classes, num) = sess.run(
	    		[detection_boxes, detection_scores, detection_classes, num_detections], 
	    		feed_dict={image_tensor: image_np_expanded})
	    	
	    	vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
	    	out.write(cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
	    	
cap.release()
out.release()
cv2.destroyAllWindows()
复制代码

播放处理好的视频,可以看到很多地方都有相应的检测结果

深度有趣 | 11 TensorFlow物体检测

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

运营前线 2

运营前线 2

兰军 等著 / 机械工业出版社 / 2017-4 / 69.00

“运营前线”是一个系列,目前已经出版2部,与“产品前线”一样,该系列书也由资深的产品和运营专家兰军(Blues)领衔策划和写作,旨在梳理和总结国内一线互联网公司的运营方法和技巧,让所有产品人和运营人都有机会了解和学习这些大的互联网公司是如何做运营的。 这2部作品汇集了来自腾讯、阿里、百度、360、迅雷、YY、小米、爱奇艺、乐视等数十家大型互联网公司的一线运营专家的技巧和方法论。共包含9大运营......一起来看看 《运营前线 2》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

随机密码生成器
随机密码生成器

多种字符组合密码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试