sklearn KMeans 分类

栏目: 数据库 · 发布时间: 7年前

import itertools

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans


np.random.seed(1)

# Set the number of samples, the means and
# variances of each of the three simulated clusters
samples = 100
mu = [(7, 5), (8, 12), (1, 10)]
cov = [
    [[0.5, 0], [0, 1.0]],
    [[2.0, 0], [0, 3.5]],
    [[3, 0], [0, 5]],
]


# Generate a list of the 2D cluster points
norm_dists = [
    np.random.multivariate_normal(m, c, samples)
    for m, c in zip(mu, cov)
]
X = np.array(list(itertools.chain(*norm_dists)))

# Apply the K-Means Algorithm for k=3, which is
# equal to the number of true Gaussian clusters
km3 = KMeans(n_clusters=3)
km3.fit(X)
km3_labels = km3.labels_

# Apply the K-Means Algorithm for k=4, which is
# larger than the number of true Gaussian clusters
km4 = KMeans(n_clusters=4)
km4.fit(X)
km4_labels = km4.labels_

# Create a subplot comparing k=3 and k=4
# for the K-Means Algorithm
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14,6))
ax1.scatter(X[:, 0], X[:, 1], c=km3_labels.astype(np.float))
ax1.set_xlabel("$x_1$")
ax1.set_ylabel("$x_2$")
ax1.set_title("K-Means with $k=3$")
ax2.scatter(X[:, 0], X[:, 1], c=km4_labels.astype(np.float))
ax2.set_xlabel("$x_1$")
ax2.set_ylabel("$x_2$")
ax2.set_title("K-Means with $k=4$")
plt.show()

sklearn KMeans 分类

http://www.waitingfy.com/archives/5030

Post Views: 0

5030


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Spring技术内幕

Spring技术内幕

计文柯 / 机械工业出版社 / 2010-1-1 / 55.00元

内容简介: 本书是Spring领域的问鼎之作,由业界拥有10余年开发经验的资深Java专家亲自执笔!Java开发者社区和Spring开发者社区一致强烈推荐。 国内第一本基于Spring3.0的著作,从源代码的角度对Spring的内核和各个主要功能模块的架构、设计和实现原理进行了深入剖析。你不仅能从木书中参透Spring框架的优秀架构和设计思想,而且还能从Spring优雅的实现源码中一窥......一起来看看 《Spring技术内幕》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具