sklearn KMeans 分类

栏目: 数据库 · 发布时间: 7年前

import itertools

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans


np.random.seed(1)

# Set the number of samples, the means and
# variances of each of the three simulated clusters
samples = 100
mu = [(7, 5), (8, 12), (1, 10)]
cov = [
    [[0.5, 0], [0, 1.0]],
    [[2.0, 0], [0, 3.5]],
    [[3, 0], [0, 5]],
]


# Generate a list of the 2D cluster points
norm_dists = [
    np.random.multivariate_normal(m, c, samples)
    for m, c in zip(mu, cov)
]
X = np.array(list(itertools.chain(*norm_dists)))

# Apply the K-Means Algorithm for k=3, which is
# equal to the number of true Gaussian clusters
km3 = KMeans(n_clusters=3)
km3.fit(X)
km3_labels = km3.labels_

# Apply the K-Means Algorithm for k=4, which is
# larger than the number of true Gaussian clusters
km4 = KMeans(n_clusters=4)
km4.fit(X)
km4_labels = km4.labels_

# Create a subplot comparing k=3 and k=4
# for the K-Means Algorithm
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14,6))
ax1.scatter(X[:, 0], X[:, 1], c=km3_labels.astype(np.float))
ax1.set_xlabel("$x_1$")
ax1.set_ylabel("$x_2$")
ax1.set_title("K-Means with $k=3$")
ax2.scatter(X[:, 0], X[:, 1], c=km4_labels.astype(np.float))
ax2.set_xlabel("$x_1$")
ax2.set_ylabel("$x_2$")
ax2.set_title("K-Means with $k=4$")
plt.show()

sklearn KMeans 分类

http://www.waitingfy.com/archives/5030

Post Views: 0

5030


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

CLR via C#

CLR via C#

Jeffrey Richter / 周靖 / 清华大学出版社 / 2015-1-1 / CNY 109.00

《CLR via C#(第4版)》针对CLR和.NET Framework 4.5进行深入、全面的探讨,并结合实例介绍了如何利用它们进行设计、开发和调试。全书5部分共29章。第Ⅰ部分介绍CLR基础,第Ⅱ部分解释如何设计类型,第Ⅲ部分介绍基本类型,第Ⅳ部分以核心机制为主题,第Ⅴ部分重点介绍线程处理。 通过本书的阅读,读者可以掌握CLR和.NET Framework的精髓,轻松、高效地创建高性能......一起来看看 《CLR via C#》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

URL 编码/解码
URL 编码/解码

URL 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具