Python 面向对象

栏目: 编程语言 · Python · 编程教程 · python 教程 · 发布时间: 7年前

内容简介:Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。

Python从设计之初就已经是一门面向对象的语言,正因为如此,在 Python 中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。

如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于你更容易的学习Python的面向对象编程。

接下来我们先来简单的了解下面向对象的一些基本特征。

面向对象技术简介

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据。
  • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 实例变量:定义在方法中的变量,只作用于当前实例的类。
  • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化:创建一个类的实例,类的具体对象。
  • 方法:类中定义的函数。
  • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

创建类

使用class语句来创建一个新类,class之后为类的名称并以冒号结尾,如下实例:

class ClassName:
   '类的帮助信息'   #类文档字符串
   class_suite  #类体

类的帮助信息可以通过ClassName.__doc__查看。

class_suite 由类成员,方法,数据属性组成。

实例

以下是一个简单的Python类实例:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Employee:
   '所有员工的基类'
   empCount = 0
 
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
 
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary
  • empCount 变量是一个类变量,它的值将在这个类的所有实例之间共享。你可以在内部类或外部类使用 Employee.empCount 访问。
  • 第一种方法__init__()方法是一种特殊的方法,被称为类的构造函数或初始化方法,当创建了这个类的实例时就会调用该方法
  • self 代表类的实例,self 在定义类的方法时是必须有的,虽然在调用时不必传入相应的参数。

self代表类的实例,而非类

类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。

class Test:
    def prt(self):
        print(self)
        print(self.__class__)
 
t = Test()
t.prt()

以上实例执行结果为:

<__main__.Test instance at 0x10d066878>
__main__.Test

从执行结果可以很明显的看出,self 代表的是类的实例,代表当前对象的地址,而 self.class 则指向类。

self 不是 python 关键字,我们把他换成 runoob 也是可以正常执行的:

class Test:
    def prt(runoob):
        print(runoob)
        print(runoob.__class__)
 
t = Test()
t.prt()

以上实例执行结果为:

<__main__.Test instance at 0x10d066878>
__main__.Test

创建实例对象

实例化类其他编程语言中一般用关键字 new,但是在 Python 中并没有这个关键字,类的实例化类似函数调用方式。

以下使用类的名称 Employee 来实例化,并通过 __init__ 方法接受参数。

"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000)

访问属性

您可以使用点(.)来访问对象的属性。使用如下类的名称访问类变量:

emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

完整实例:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Employee:
   '所有员工的基类'
   empCount = 0
 
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
 
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary
 
"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000)
emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

执行以上代码输出结果如下:

Name :  Zara ,Salary:  2000
Name :  Manni ,Salary:  5000
Total Employee 2

你可以添加,删除,修改类的属性,如下所示:

emp1.age = 7  # 添加一个 'age' 属性
emp1.age = 8  # 修改 'age' 属性
del emp1.age  # 删除 'age' 属性

你也可以使用以下函数的方式来访问属性:

  • getattr(obj, name[, default]) : 访问对象的属性。
  • hasattr(obj,name) : 检查是否存在一个属性。
  • setattr(obj,name,value) : 设置一个属性。如果属性不存在,会创建一个新属性。
  • delattr(obj, name) : 删除属性。
hasattr(emp1, 'age')    # 如果存在 'age' 属性返回 True。
getattr(emp1, 'age')    # 返回 'age' 属性的值
setattr(emp1, 'age', 8) # 添加属性 'age' 值为 8
delattr(empl, 'age')    # 删除属性 'age'

Python内置类属性

  • __dict__ : 类的属性(包含一个字典,由类的数据属性组成)
  • __doc__ :类的文档字符串
  • __name__: 类名
  • __module__: 类定义所在的模块(类的全名是'__main__.className',如果类位于一个导入模块mymod中,那么className.__module__ 等于 mymod)
  • __bases__ : 类的所有父类构成元素(包含了一个由所有父类组成的元组)

Python内置类属性调用实例如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Employee:
   '所有员工的基类'
   empCount = 0
 
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
 
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary
 
print "Employee.__doc__:", Employee.__doc__
print "Employee.__name__:", Employee.__name__
print "Employee.__module__:", Employee.__module__
print "Employee.__bases__:", Employee.__bases__
print "Employee.__dict__:", Employee.__dict__

执行以上代码输出结果如下:

Employee.__doc__: 所有员工的基类
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount': <function displayCount at 0x10a939c80>, 'empCount': 0, 'displayEmployee': <function displayEmployee at 0x10a93caa0>, '__doc__': '\xe6\x89\x80\xe6\x9c\x89\xe5\x91\x98\xe5\xb7\xa5\xe7\x9a\x84\xe5\x9f\xba\xe7\xb1\xbb', '__init__': <function __init__ at 0x10a939578>}

python对象销毁(垃圾回收)

Python 使用了引用计数这一简单技术来跟踪和回收垃圾。

在 Python 内部记录着所有使用中的对象各有多少引用。

一个内部跟踪变量,称为一个引用计数器。

当对象被创建时, 就创建了一个引用计数, 当这个对象不再需要时, 也就是说, 这个对象的引用计数变为0 时, 它被垃圾回收。但是回收不是"立即"的, 由解释器在适当的时机,将垃圾对象占用的内存空间回收。

a = 40      # 创建对象  <40>
b = a       # 增加引用, <40> 的计数
c = [b]     # 增加引用.  <40> 的计数

del a       # 减少引用 <40> 的计数
b = 100     # 减少引用 <40> 的计数
c[0] = -1   # 减少引用 <40> 的计数

垃圾回收机制不仅针对引用计数为0的对象,同样也可以处理循环引用的情况。循环引用指的是,两个对象相互引用,但是没有其他变量引用他们。这种情况下,仅使用引用计数是不够的。Python 的垃圾收集器实际上是一个引用计数器和一个循环垃圾收集器。作为引用计数的补充, 垃圾收集器也会留心被分配的总量很大(及未通过引用计数销毁的那些)的对象。 在这种情况下, 解释器会暂停下来, 试图清理所有未引用的循环。

实例

析构函数 __del__ ,__del__在对象销毁的时候被调用,当对象不再被使用时,__del__方法运行:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Point:
   def __init__( self, x=0, y=0):
      self.x = x
      self.y = y
   def __del__(self):
      class_name = self.__class__.__name__
      print class_name, "销毁"
 
pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # 打印对象的id
del pt1
del pt2
del pt3

以上实例运行结果如下:

3083401324 3083401324 3083401324
Point 销毁

注意:通常你需要在单独的文件中定义一个类,

类的继承

面向对象的编程带来的主要好处之一是代码的重用,实现这种重用的方法之一是通过继承机制。继承完全可以理解成类之间的类型和子类型关系。

需要注意的地方:继承语法 class 派生类名(基类名)://... 基类名写在括号里,基本类是在类定义的时候,在元组之中指明的。

在python中继承中的一些特点:

  • 1:在继承中基类的构造(__init__()方法)不会被自动调用,它需要在其派生类的构造中亲自专门调用。
  • 2:在调用基类的方法时,需要加上基类的类名前缀,且需要带上self参数变量。区别于在类中调用普通函数时并不需要带上self参数
  • 3:Python总是首先查找对应类型的方法,如果它不能在派生类中找到对应的方法,它才开始到基类中逐个查找。(先在本类中查找调用的方法,找不到才去基类中找)。

如果在继承元组中列了一个以上的类,那么它就被称作"多重继承" 。

语法:

派生类的声明,与他们的父类类似,继承的基类列表跟在类名之后,如下所示:

class SubClassName (ParentClass1[, ParentClass2, ...]):
   'Optional class documentation string'
   class_suite
#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Parent:        # 定义父类
   parentAttr = 100
   def __init__(self):
      print "调用父类构造函数"
 
   def parentMethod(self):
      print '调用父类方法'
 
   def setAttr(self, attr):
      Parent.parentAttr = attr
 
   def getAttr(self):
      print "父类属性 :", Parent.parentAttr
 
class Child(Parent): # 定义子类
   def __init__(self):
      print "调用子类构造方法"
 
   def childMethod(self):
      print '调用子类方法 child method'
 
c = Child()          # 实例化子类
c.childMethod()      # 调用子类的方法
c.parentMethod()     # 调用父类方法
c.setAttr(200)       # 再次调用父类的方法
c.getAttr()          # 再次调用父类的方法

以上代码执行结果如下:

调用子类构造方法
调用子类方法 child method
调用父类方法
父类属性 : 200

你可以继承多个类

class A:        # 定义类 A
.....

class B:         # 定义类 B
.....

class C(A, B):   # 继承类 A 和 B
.....

你可以使用issubclass()或者isinstance()方法来检测。

  • issubclass() - 布尔函数判断一个类是另一个类的子类或者子孙类,语法:issubclass(sub,sup)
  • isinstance(obj, Class) 布尔函数如果obj是Class类的实例对象或者是一个Class子类的实例对象则返回true。

方法重写

如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法:

实例:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class Parent:        # 定义父类
   def myMethod(self):
      print '调用父类方法'
 
class Child(Parent): # 定义子类
   def myMethod(self):
      print '调用子类方法'
 
c = Child()          # 子类实例
c.myMethod()         # 子类调用重写方法

执行以上代码输出结果如下:

调用子类方法

基础重载方法

下表列出了一些通用的功能,你可以在自己的类重写:

序号方法, 描述 & 简单的调用
1__init__ ( self [,args...] )
构造函数
简单的调用方法: obj = className(args)
2__del__( self )
析构方法, 删除一个对象
简单的调用方法 : dell obj
3__repr__( self )
转化为供解释器读取的形式
简单的调用方法 : repr(obj)
4__str__( self )
用于将值转化为适于人阅读的形式
简单的调用方法 : str(obj)
5__cmp__ ( self, x )
对象比较
简单的调用方法 : cmp(obj, x)

运算符重载

Python同样支持运算符重载,实例如下:

#!/usr/bin/python
 
class Vector:
   def __init__(self, a, b):
      self.a = a
      self.b = b
 
   def __str__(self):
      return 'Vector (%d, %d)' % (self.a, self.b)
   
   def __add__(self,other):
      return Vector(self.a + other.a, self.b + other.b)
 
v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2

以上代码执行结果如下所示:

Vector(7,8)

类属性与方法

类的私有属性

__private_attrs:两个下划线开头,声明该属性为私有,不能在类的外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs。

类的方法

在类的内部,使用 def 关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数

类的私有方法

__private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 self.__private_methods

#!/usr/bin/python
# -*- coding: UTF-8 -*-
 
class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0    # 公开变量
 
    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print self.__secretCount
 
counter = JustCounter()
counter.count()
counter.count()
print counter.publicCount
print counter.__secretCount  # 报错,实例不能访问私有变量

Python 通过改变名称来包含类名:

1
2
2
Traceback (most recent call last):
  File "test.py", line 17, in <module>
    print counter.__secretCount  # 报错,实例不能访问私有变量
AttributeError: JustCounter instance has no attribute '__secretCount'

Python不允许实例化的类访问私有数据,但你可以使用 object._className__attrName 访问属性,将如下代码替换以上代码的最后一行代码:

.........................
print counter._JustCounter__secretCount

执行以上代码,执行结果如下:

1
2
2
2

单下划线、双下划线、头尾双下划线说明:

  • __foo__: 定义的是特列方法,类似 __init__() 之类的。
  • _foo: 以单下划线开头的表示的是 protected 类型的变量,即保护类型只能允许其本身与子类进行访问,不能用于 from module import *
  • __foo: 双下划线的表示的是私有类型(private)的变量, 只能是允许这个类本身进行访问了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web Scalability for Startup Engineers

Web Scalability for Startup Engineers

Artur Ejsmont / McGraw / 2015-6-23 / USD 34.81

Design and build scalable web applications quickly This is an invaluable roadmap for meeting the rapid demand to deliver scalable applications in a startup environment. With a focus on core concept......一起来看看 《Web Scalability for Startup Engineers》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具