PaddlePaddle之数据预处理

栏目: 编程工具 · 发布时间: 6年前

内容简介:根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,包括四种数据类型和三种序列格式:api如下:不同的数据类型和序列模式返回的格式不同,如下表:

根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,包括四种数据类型和三种序列格式:

四种数据类型:

  • dense_vector:稠密的浮点数向量。
  • sparse_binary_vector:稀疏的二值向量,即大部分值为0,但有值的地方必须为1。
  • sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。
  • integer:整型格式

api如下:

  • paddle.v2.data_type.dense_vector(dim, seq_type=0)

    • dim(int) 向量维度
    • seq_type(int)输入的序列格式
    • 说明:稠密向量,输入特征是一个稠密的浮点向量。举个例子,手写数字识别里的输入图片是28*28的像素,Paddle的神经网络的输入应该是一个784维的稠密向量。
    • 参数:
    • 返回类型:InputType
  • paddle.v2.data_type.sparse_binary_vector(dim, seq_type=0)

    • 说明:稀疏的二值向量。输入特征是一个稀疏向量,这个向量的每个元素要么是0,要么是1
    • 参数:同上
    • 返回类型:同上
  • paddle.v2.data_type.sparse_vector(dim, seq_type=0)

    • 说明:稀疏向量,向量里大多数元素是0,其他的值可以是任意的浮点值
    • 参数:同上
    • 返回类型:同上
  • paddle.v2.data_type.integer_value(value_range, seq_type=0)

    • seq_type(int):输入的序列格式
    • value_range(int):每个元素的范围
    • 说明:整型格式
    • 参数:
    • 返回类型:InputType

不同的数据类型和序列模式返回的格式不同,如下表:

PaddlePaddle之数据预处理

其中f表示浮点数,i表示整数

注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,

  • 对一个5维非序列的稀疏01向量 [0, 1, 1, 0, 0] ,类型是sparse_binary_vector,返回的是 [1, 2] 。(因为只有第1位和第2位有值)

  • 对一个5维非序列的稀疏浮点向量 [0, 0.5, 0.7, 0, 0] ,类型是sparse_float_vector,返回的是 [(1, 0.5), (2, 0.7)] 。(因为只有第一位和第二位有值,分别是0.5和0.7)

PaddlePaddle的数据读取方式

我们了解了上文的四种基本数据格式和三种序列模式后,在处理自己的数据时可以根据需求选择,但是处理完数据后如何把数据放到模型里去训练呢?我们知道,基本的方法一般有两种:

  • 一次性加载到内存:模型训练时直接从内存中取数据,不需要大量的IO消耗,速度快,适合少量数据。

  • 加载到磁盘/HDFS/共享存储等:这样不用占用内存空间,在处理大量数据时一般采取这种方式,但是缺点是每次数据加载进来也是一次IO的开销,非常影响速度。

在PaddlePaddle中我们可以有三种模式来读取数据:分别是reader、reader creator和reader decorator,这三者有什么区别呢?

  • reader:从本地、网络、分布式文件系统HDFS等读取数据,也可随机生成数据,并返回一个或多个数据项。

  • reader creator:一个返回reader的函数。

  • reader decorator:装饰器,可组合一个或多个reader。

reader

我们先以reader为例,为房价数据(斯坦福吴恩达的公开课第一课举例的数据)创建一个reader:

  1. 创建一个reader,实质上是一个迭代器,每次返回一条数据(此处以房价数据为例)
reader = paddle.dataset.uci_housing.train()
  1. 创建一个shuffle_reader,把上一步的reader放进去,配置buf_size就可以读取buf_size大小的数据自动做shuffle,让数据打乱,随机化
shuffle_reader = paddle.reader.shuffle(reader,buf_size= 100)
  1. 创建一个batch_reader,把上一步混洗好的shuffle_reader放进去,给定batch_size,即可创建。
batch_reader = paddle.batch(shuffle_reader,batch_size = 2)

这三种方式也可以组合起来放一块:

reader = paddle.batch(
    paddle.reader.shuffle(
        uci_housing.train(),
    buf_size = 100),
    batch_size=2)    
复制代码

可以以一个直观的图来表示:

PaddlePaddle之数据预处理

reader creator

如果想要生成一个简单的随机数据,以reader creator为例:

def reader_creator():    def reader():        while True:            yield numpy.random.uniform(-1,1,size=784)    return reader
   源码见creator.py, 支持四种格式:np_array,text_file,RecordIO和cloud_reader
__all__ = ['np_array', 'text_file', "cloud_reader"]
def np_array(x):
    """
    Creates a reader that yields elements of x, if it is a
    numpy vector. Or rows of x, if it is a numpy matrix.
    Or any sub-hyperplane indexed by the highest dimension.
    :param x: the numpy array to create reader from.
    :returns: data reader created from x.
    """
    def reader():
        if x.ndim < 1:
            yield x

        for e in x:
            yield e
    return reader
def text_file(path):
    """
    Creates a data reader that outputs text line by line from given text file.
    Trailing new line ('\\\\n') of each line will be removed.
    :path: path of the text file.
    :returns: data reader of text file
    """

    def reader():
        f = open(path, "r")
        for l in f:
            yield l.rstrip('\n')
        f.close()
    return reader
def recordio(paths, buf_size=100):
    """
    Creates a data reader from given RecordIO file paths separated by ",",
        glob pattern is supported.
    :path: path of recordio files, can be a string or a string list.
    :returns: data reader of recordio files.
    """

    import recordio as rec
    import paddle.v2.reader.decorator as dec
    import cPickle as pickle

    def reader():
        if isinstance(paths, basestring):
            path = paths
        else:
            path = ",".join(paths)
        f = rec.reader(path)
        while True:
            r = f.read()
            if r is None:
                break
            yield pickle.loads(r)
        f.close()
    return dec.buffered(reader, buf_size)
pass_num = 0
def cloud_reader(paths, etcd_endpoints, timeout_sec=5, buf_size=64):
    """
    Create a data reader that yield a record one by one from
        the paths:
    :paths: path of recordio files, can be a string or a string list.
    :etcd_endpoints: the endpoints for etcd cluster
    :returns: data reader of recordio files.
    ..  code-block:: python
        from paddle.v2.reader.creator import cloud_reader
        etcd_endpoints = "http://127.0.0.1:2379"
        trainer.train.(
            reader=cloud_reader(["/work/dataset/uci_housing/uci_housing*"], etcd_endpoints),
        )
    """
    import os
    import cPickle as pickle
    import paddle.v2.master as master
    c = master.client(etcd_endpoints, timeout_sec, buf_size)

    if isinstance(paths, basestring):
        path = [paths]
    else:
        path = paths
    c.set_dataset(path)

    def reader():
        global pass_num
        c.paddle_start_get_records(pass_num)
        pass_num += 1

        while True:
            r, e = c.next_record()
            if not r:
                if e != -2:
                    print "get record error: ", e
                break
            yield pickle.loads(r)

    return reader
复制代码

reader decorator

如果想要读取同时读取两部分的数据,那么可以定义两个reader,合并后对其进行shuffle。如我想读取所有用户对比车系的数据和浏览车系的数据,可以定义两个reader,分别为contrast()和view(),然后通过预定义的reader decorator缓存并组合这些数据,在对合并后的数据进行乱序操作。源码见decorator.py

data = paddle.reader.shuffle(
        paddle.reader.compose(
            paddle.reader(contradt(contrast_path),buf_size = 100),
            paddle.reader(view(view_path),buf_size = 200),            500)
复制代码

这样有一个很大的好处,就是组合特征来训练变得更容易了!传统的跑模型的方法是,确定label和feature,尽可能多的找合适的feature扔到模型里去训练,这样我们就需要做一张大表,训练完后我们可以分析某些特征的重要性然后重新增加或减少一些feature来进行训练,这样我们有需要对原来的label-feature表进行修改,如果数据量小没啥影响,就是麻烦点,但是数据量大的话需要每一次增加feature,和主键、label来join的操作都会很耗时,如果采取这种方式的话,我们可以对某些同一类的特征做成一张表,数据存放的地址存为一个变量名,每次跑模型的时候想选取几类特征,就创建几个reader,用reader decorator 组合起来,最后再shuffle灌倒模型里去训练。这!样!是!不!是!很!方!便!

如果没理解,我举一个实例,假设我们要预测用户是否会买车,label是买车 or 不买车,feature有浏览车系、对比车系、关注车系的功能偏好等等20个,传统的思维是做成这样一张表:

PaddlePaddle之数据预处理

如果想要减少feature_2,看看feature_2对模型的准确率影响是否很大,那么我们需要在这张表里去掉这一列,想要增加一个feature的话,也需要在feature里增加一列,如果用reador decorator的话,我们可以这样做数据集:

PaddlePaddle之数据预处理

把相同类型的feature放在一起,不用频繁的join减少时间,一共做四个表,创建4个reador:

data = paddle.reader.shuffle(
            paddle.reader.compose(
                paddle.reader(table1(table1_path),buf_size = 100),
                paddle.reader(table2(table2_path),buf_size = 100),
                paddle.reader(table3(table3_path),buf_size = 100),
                paddle.reader(table4(table4_path),buf_size = 100),
            500)
复制代码

如果新发现了一个特征,想尝试这个特征对模型提高准确率有没有用,可以再单独把这个特征数据提取出来,再增加一个reader,用reader decorator组合起来,shuffle后放入模型里跑就行了。

PaddlePaddle的数据预处理实例

还是以手写数字为例,对数据进行处理后并划分train和test,只需要4步即可:

1.指定数据地址

import paddle.v2.dataset.common
import subprocess
import numpy
import platform
__all__ = ['train', 'test', 'convert']

URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
复制代码

2.创建reader creator

def reader_creator(image_filename, label_filename, buffer_size):
    # 创建一个reader
    def reader():
        if platform.system() == 'Darwin':
            zcat_cmd = 'gzcat'
        elif platform.system() == 'Linux':
            zcat_cmd = 'zcat'
        else:
            raise NotImplementedError()

        m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE)
        m.stdout.read(16)  

        l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
        l.stdout.read(8)  

        try:  # reader could be break.
            while True:
                labels = numpy.fromfile(
                    l.stdout, 'ubyte', count=buffer_size).astype("int")

                if labels.size != buffer_size:
                    break  # numpy.fromfile returns empty slice after EOF.

                images = numpy.fromfile(
                    m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
                        (buffer_size, 28 * 28)).astype('float32')

                images = images / 255.0 * 2.0 - 1.0

                for i in xrange(buffer_size):
                    yield images[i, :], int(labels[i])
        finally:
            m.terminate()
            l.terminate()

    return reader
复制代码

3.创建训练集和测试集

def train():
    """
    创建mnsit的训练集 reader creator
    返回一个reador creator,每个reader里的样本都是图片的像素值,在区间[0,1]内,label为0~9
    返回:training reader creator
    """
    return reader_creator(
        paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
                                          TRAIN_IMAGE_MD5),
        paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
                                          TRAIN_LABEL_MD5), 100)


def test():
    """
    创建mnsit的测试集 reader creator
    返回一个reador creator,每个reader里的样本都是图片的像素值,在区间[0,1]内,label为0~9
    返回:testreader creator
    """
    return reader_creator(
        paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
                                          TEST_IMAGE_MD5),
        paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
                                          TEST_LABEL_MD5), 100)
复制代码

4.下载数据并转换成相应格式

def fetch():
    paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
    paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
    paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
    paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)


def convert(path):
    """
    将数据格式转换为 recordio format
    """
    paddle.v2.dataset.common.convert(path, train(), 1000, "minist_train")
    paddle.v2.dataset.common.convert(path, test(), 1000, "minist_test")
复制代码

如果想换成自己的训练数据,只需要按照步骤改成自己的数据地址,创建相应的reader creator(或者reader decorator)即可。

这是图像的例子,如果我们想训练一个文本模型,做一个情感分析,这个时候如何处理数据呢?步骤也很简单。假设我们有一堆数据,每一行为一条样本,以 \t 分隔,第一列是类别标签,第二列是输入文本的内容,文本内容中的词语以空格分隔。以下是两条示例数据:

  • positive 今天终于试了自己理想的车 外观太骚气了 而且中控也很棒
  • negative 这台车好贵 而且还费油 性价比太低了

现在开始做数据预处理

1.创建reader

def train_reader(data_dir, word_dict, label_dict):
    def reader():
        UNK_ID = word_dict["<UNK>"]
        word_col = 0
        lbl_col = 1

        for file_name in os.listdir(data_dir):
            with open(os.path.join(data_dir, file_name), "r") as f:
                for line in f:
                    line_split = line.strip().split("\t")
                    word_ids = [
                        word_dict.get(w, UNK_ID)
                        for w in line_split[word_col].split()
                    ]
                    yield word_ids, label_dict[line_split[lbl_col]]

    return reader
复制代码

返回类型为: paddle.data_type.integer_value_sequence(词语在字典的序号)和 paddle.data_type.integer_value(类别标签)

2.组合读取方式

train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
 buf_size=1000),
batch_size=batch_size)
复制代码

完整的代码如下(加上了划分train和test部分):

train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
 buf_size=1000),
batch_size=batch_size)
  
完整的代码如下(加上了划分train和test部分):

import os
def train_reader(data_dir, word_dict, label_dict):
    """
   创建训练数据reader
    :param data_dir: 数据地址.
    :type data_dir: str
    :param word_dict: 词典地址,
        词典里必须有 "UNK" .
    :type word_dict:python dict
    :param label_dict: label 字典的地址
    :type label_dict: Python dict
    """
    def reader():
        UNK_ID = word_dict["<UNK>"]
        word_col = 1
        lbl_col = 0
        for file_name in os.listdir(data_dir):
            with open(os.path.join(data_dir, file_name), "r") as f:
                for line in f:
                    line_split = line.strip().split("\t")
                    word_ids = [
                        word_dict.get(w, UNK_ID)
                        for w in line_split[word_col].split()
                    ]
                    yield word_ids, label_dict[line_split[lbl_col]]
    return reader
def test_reader(data_dir, word_dict):
    """
    创建测试数据reader
    :param data_dir: 数据地址.
    :type data_dir: str
    :param word_dict: 词典地址,
        词典里必须有 "UNK" .
    :type word_dict:python dict
    """
    def reader():
        UNK_ID = word_dict["<UNK>"]
        word_col = 1

        for file_name in os.listdir(data_dir):
            with open(os.path.join(data_dir, file_name), "r") as f:
                for line in f:
                    line_split = line.strip().split("\t")
                    if len(line_split) < word_col: continue
                    word_ids = [
                        word_dict.get(w, UNK_ID)
                        for w in line_split[word_col].split()
                    ]
                    yield word_ids, line_split[word_col]
    return reader
复制代码

总结

这篇文章主要讲了在paddlepaddle里如何加载自己的数据集,转换成相应的格式,并划分train和test。我们在使用一个框架的时候通常会先去跑几个简单的demo,但是如果不用常见的demo的数据,自己做一个实际的项目,完整的跑通一个模型,这才代表我们掌握了这个框架的基本应用知识。跑一个模型第一步就是数据预处理,在paddlepaddle里,提供的方式非常简单,但是有很多优点:

  • shuffle数据非常方便
  • 可以将数据组合成batch训练
  • 可以利用reader decorator来组合多个reader,提高组合特征运行模型的效率
  • 可以多线程读取数据

而我之前使用过mxnet来训练车牌识别的模型,50w的图片数据想要一次训练是非常慢的,这样的话就有两个解决方法:一是批量训练,这一点大多数的框架都会有, 二是转换成mxnet特有的rec格式,提高读取效率,可以通过im2rec.py将图片转换,比较麻烦,如果是tesnorflow,也有相对应的特定格式tfrecord,这几种方式各有优劣,从易用性上,paddlepaddle是比较简单的。

转载:宽客在线


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HTML 5实战

HTML 5实战

陶国荣 / 机械工业出版社 / 2011-11 / 59.00元

陶国荣编著的《HTML5实战》是一本系统而全面的HTML 5教程,根据HTML 5标准的最新草案,系统地对HTML 5的所有重要知识点进行了全面的讲解。在写作方式上,本书以一种开创性的方式使理论与实践达到极好的平衡,不仅对理论知识进行了清晰而透彻的阐述,而且根据读者理解这些知识的需要,精心设计了106个完整(每个案例分为功能描述、实现代码、效果展示和代码分析4个部分)的实战案例,旨在帮助读者通过实......一起来看看 《HTML 5实战》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具