内容简介:问题:八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法百度来的代码:
问题:
八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法
百度来的代码:
回溯法用递归实现八皇后解法
declare
type t_queen is varray(8) of number;
queen t_queen := t_queen(1, 2, 3, 4, 5, 6, 7, 8);
l_num number := 0;
-- 显示“八皇后”
procedure show(queen t_queen) is
begin
l_num := l_num + 1;
dbms_output.put_line(rpad('---- NO. ' || l_num || ' ', 16, '-'));
-- 从第1行显示到第8行
for r in 1 .. 8 loop
-- 当前行,从第1列显示到第8列
for c in 1 .. 8 loop
-- “皇后”用“Q”表示,空位用“.”表示
dbms_output.put(case when queen(r) = c then 'Q' else '.'
end || ' ');
end loop;
dbms_output.put_line(null);
end loop;
end;
-- 冲突检测。检测第row行与第1行至第row-1行是否冲突。
-- 不冲突,返回true;冲突返回false
function is_ok(queen t_queen, row number) return boolean is
t number;
begin
for r in 1 .. row - 1 loop
if queen(r) = queen(row) then
-- 第row行与第r行的皇后在同一列上,冲突
return false;
end if;
t := queen(r) - queen(row);
if t = r - row or t = row - r then
-- 第row行与第r行的皇后在同一斜线上,冲突
return false;
end if;
end loop;
return true;
end;
-- 递归查找所有排列
procedure find(queen in out t_queen, row number) is
begin
for col in 1 .. 8 loop
-- 每一行列的位置从第1列到第8列检测
queen(row) := col;
if is_ok(queen, row) then
if row = 8 then
-- 已经查找到第8行,查找结束,显示结果
show(queen);
return;
end if;
find(queen, row + 1); -- 尚未查找到第8行,第归查找一下行
end if;
end loop;
end;
begin
find(queen, 1); -- 从第1行开始查找
end;
运行结果:
92种结果展示的非常清晰
还有百度到了另外一种更简洁的写法,
利用Oracle 11R2版本的递归属性,算法很简单,也就是在斜线上,直线上无冲突即可
with sou as (
select level n,1 k from dual connect by level<=8
),
ntt(n,k) as (
select sou.n ,sou.k from sou where k=1
union all
select ntt.n*10+a.n
,ntt.k+1
from ntt,sou a
where not exists(select 1
from (select level b1 from dual connect by level<=7) t
where t.b1<=ntt.k and (
a.n=to_number(substr(to_char(ntt.n),b1,1)) or
a.n=to_number(substr(to_char(ntt.n),b1,1))+(ntt.k+1-t.b1) or
a.n=to_number(substr(to_char(ntt.n),b1,1))-(ntt.k+1-t.b1)
)
) and ntt.k<=7
)
select n from ntt where ntt.k=8 ;
结果是一个数字表示在棋盘上的位置,也可以改一下用两位整数表示一个棋位,这样可以扩展到10皇后以上。
时间因素:
也即每增加一个皇后,增加的时间约为上一个的e(x+1)倍
Linux公社的RSS地址: https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-09/154202.htm
以上所述就是小编给大家介绍的《[经典算法]8皇后问题sql求解(回溯算法)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 回溯算法讲解--适用于leetcode绝大多数回溯题目
- 常用算法之回溯法
- LeetCode37 使用回溯算法实现解数独,详解剪枝优化
- LeetCode46 回溯算法求全排列,这次是真全排列
- 数据结构与算法(七):迷宫回溯和八皇后问题
- LeetCode偶尔一题 —— 39. Combination Sum(回溯算法系列)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Web容量规划的艺术
阿尔斯帕瓦 / 叶飞、罗江华 / 机械工业出版社 / 2010-1 / 29.00元
《Web容量规划的艺术》由John Allspaw(F订ickr的工程运营经理)撰写,结合了他个人在F1ickr成长过程中的许多经历和很多其他产业中同行的洞察力。在衡量增长、预测趋势、成本效益等方面,他们的经验都会给你一些可靠并有效的指导。 网站的成功是以使用和增长来衡量的,而且网站类公司的成败(生死)是依赖于他们是否有能力来衡量决定他们的基础结构,从而适应不断增长的需求。作者通过自身实践给......一起来看看 《Web容量规划的艺术》 这本书的介绍吧!
SHA 加密
SHA 加密工具
UNIX 时间戳转换
UNIX 时间戳转换