内容简介:首先Hive的底层首先是MR,是属于批处理处理时间相对较长,不属于实时读写。在其架构上HBase和Hive有很大的区别。Memstore 与 storefile– HBase能提供实时计算服务主要原因是由其架构和底层的数据结构决定的,即由LSM-Tree(Log-Structured Merge-Tree) +HTable(region分区) + Cache决定——客户端可以直接定位到要查数据所在的HRegion server服务器,然后直接在服务器的一个region上查找要匹配的数据,并且这些数据部分是
首先Hive的底层首先是MR,是属于批处理处理时间相对较长,不属于实时读写。在其架构上HBase和Hive有很大的区别。
架构介绍:
Hive架构
- (1)用户接口主要有三个:CLI,Client 和 WUI。其中最常用的是CLI,Cli启动的时候,会同时启动一个Hive副本。Client是Hive的客户端,用户连接至HiveServer。在启动 Client模式的时候,需要指出Hive Server所在节点,并且在该节点启动Hive Server。 WUI是通过浏览器访问Hive。
- (2)Hive将元数据存储在数据库中,如 mysql 、derby。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
- (3)解释器、编译器、优化器完成HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS中,并在随后有MapReduce调用执行。
- (4)Hive的数据存储在HDFS中,大部分的查询、计算由MapReduce完成(包含*的查询,比如select* from tbl不会生成MapRedcue任务)。
Client
- 包含访问HBase的接口并维护cache来加快对HBase的访问
Zookeeper
- 保证任何时候,集群中只有一个master
- 存贮所有Region的寻址入口。
- 实时监控Region server的上线和下线信息。并实时通知Master
- 存储HBase的schema和table元数据
Master
- 为Region server分配region
- 负责Region server的负载均衡
- 发现失效的Region server并重新分配其上的region
- 管理用户对table的增删改操作
RegionServer
- Region server维护region,处理对这些region的IO请求
- Region server负责切分在运行过程中变得过大的region
Memstore 与 storefile
- 一个region由多个store组成,一个store对应一个CF(列族)
- store包括位于内存中的memstore和位于磁盘的storefile写操作先写入memstore,当memstore中的数据达到某个阈值,hregionserver会启动flashcache进程写入storefile,每次写入形成单独的一个storefile
- 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、major compaction),在合并过程中会进行版本合并和删除工作(majar),形成更大的storefile
- 当一个region所有storefile的大小和数量超过一定阈值后,会把当前的region分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡
客户端检索数据,先在memstore找,找不到再找storefile
– HBase能提供实时计算服务主要原因是由其架构和底层的数据结构决定的,即由LSM-Tree(Log-Structured Merge-Tree) +HTable(region分区) + Cache决定——客户端可以直接定位到要查数据所在的HRegion server服务器,然后直接在服务器的一个region上查找要匹配的数据,并且这些数据部分是经过cache缓存的。
–前面说过HBase会将数据保存到内存中,在内存中的数据是有序的,如果内存空间满了,会刷写到HFile中,而在HFile中保存的内容也是有序的。当数据写入HFile后,内存中的数据会被丢弃。
–多次刷写后会产生很多小文件,后台线程会合并小文件组成大文件,这样磁盘查找会限制在少数几个数据存储文件中。HBase的写入速度快是因为它其实并不是真的立即写入文件中,而是先写入内存,随后异步刷入HFile。所以在客户端看来,写入速度很快。另外,写入时候将随机写入转换成顺序写,数据写入速度也很稳定。
–而读取速度快是因为它使用了LSM树型结构,而不是B或B+树。磁盘的顺序读取速度很快,但是相比而言,寻找磁道的速度就要慢很多。HBase的存储结构导致它需要磁盘寻道时间在可预测范围内,并且读取与所要查询的rowkey连续的任意数量的记录都不会引发额外的寻道开销。比如有5个存储文件,那么最多需要5次磁盘寻道就可以。而关系型数据库,即使有索引,也无法确定磁盘寻道次数。而且,HBase读取首先会在缓存(BlockCache)中查找,它采用了LRU(最近最少使用算法),如果缓存中没找到,会从内存中的MemStore中查找,只有这两个地方都找不到时,才会加载HFile中的内容,而上文也提到了读取HFile速度也会很快,因为节省了寻道开销。
–如果快速查询( 从磁盘读数据) ,hbase是根据rowkey查询的,只要能快速的定位rowkey,就能实现快速的查询,主要是以下因素:
- hbase是可划分成多个region,并且到达一定界限会将region横向切分
- 键是排好序的
- 按列存储的
–列如:能快速找到行所在的region(分区),假设表有10亿条记录,占空间1TB,分列成了500个region,1个region占2个G.最多读取2G的记录,就能找到对应记录;
–其次,是按列存储的,其实是列族,假设分为3个列族,每个列族就是666M,如果要查询的东西在其中1个列族上,1个列族包含1个或者多个HStoreFile,假设一个HStoreFile是128M,该列族包含5个HStoreFile在磁盘上.剩下的在内存中。
然后,排好序了的,你要的记录有可能在最前面,也有可能在最后面,假设在中间,我们只需遍历2.5个HStoreFile共300M。
最后,每个HStoreFile(HFile的封装),是以键值对(key-value)方式存储,只要遍历一个个数据块中的key的位置,并判断符合条件可以了。一般key是有限的长度,假设跟value是1:20(忽略HFile其他快,只需要15M就可获取的对应的记录,按照磁盘的访问100M/S,只需0.15秒。加上块缓存机制(LRU原则),会取得更高的效率。
实时查询,可以认为是从内存中查询,一般响应时间在1秒左右。HBase的机制是将数据先写入到内存中(缓存Buffer中),当数据量达到一定的量(如128M),产生溢写磁盘操作,在内存中,是不进行数据的更新或合并操作的,只增加数据,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBaseI/O的高性能。
以上所述就是小编给大家介绍的《HBase相对Hive查询速度快的对比》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- Redis 速度快的原因:几点图解总结
- BigBoxHost美国北卡VPS测评:硬盘大而硬,速度快而稳
- TinyBERT:模型小 7 倍,速度快 8 倍,华中科大、华为出品
- 放弃 802.11 命名方式,Wi-Fi 6 标准公布,速度快 37%
- Linux Zorin OS 15 Lite发布,老电脑上比Windows 7速度快
- 速度快、模型小,加成OpenCV,自带人脸分析!端侧推理新选择Tengine-Lite
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Python for Everyone
Cay S. Horstmann、Rance D. Necaise / John Wiley & Sons / 2013-4-26 / GBP 181.99
Cay Horstmann's" Python for Everyone "provides readers with step-by-step guidance, a feature that is immensely helpful for building confidence and providing an outline for the task at hand. "Problem S......一起来看看 《Python for Everyone》 这本书的介绍吧!