Python数据结构与算法——顺序表

栏目: Python · 发布时间: 6年前

内容简介:数据元素本身连续存储,每个元素所占的存储单元大小相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址加上逻辑地址与存储单元大小的乘积计算而得所以访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1).

概念

  • 在程序中,经常需要将一组(通常为同一个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录它们,传进传出函数等(例如,Python中的列表)。一组数据中包含的元素个数可能发生变化(可以增加或者删除元素)。
  • 对于元素增删改查的需求,最简单的解决办法就是将这一组元素当做一个序列,用元素序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系。

  • 这样的一组序列元素的组织形式,即可抽象为线性表,一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系。线性表是最基本的数据结构之一。

根据线性表的实际存储方式,分为两种实现模型:

  • 顺序表 :将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示
  • 链表: 将元素存放再通过链接构造起来的一系列存储块中

顺序表的基本形式

数据元素本身连续存储,每个元素所占的存储单元大小相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址加上逻辑地址与存储单元大小的乘积计算而得

  • 即: L0c(i) = L0 + i * c
  • 作图解释为下:

Python数据结构与算法——顺序表

  • 32位操作系统中,一个整型占用4个字节(Byte),因此列表my_list中四个整型占用字节数为16个字节,且每个元素所占用字节数相同

所以访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1).

顺序表的基本形式的特殊形式

如果元素的大小不统一,则须采用元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。此时公式中的 c 则不再是数据元素大小,而是存储一个链接地址所需的存储量。

顺序表的结构

  • 不考虑用 Python 语言具体实现,真正实现数据表结构的时候,怎么构造数据

Python数据结构与算法——顺序表

  • 出了存储数据的数据区之外,往往还会加上表头信息
  • 表头信息即:上图中上面的部分

  • 下面部分为 数据区 (连续的存储空间,内存的概念见后面的图解)

  • 构造一个数据表的时候,首先要预估数据需要多少的空间,指明数据存储所需空间,即数据区。如上图中所示,即为8个数据。那么就要向计算机申请8个空间,在表头指明

一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储去的 容量 和当前表中已有的 元素个数 两项。

顺序表的两种基本实现方式

  • 一体式结构:

Python数据结构与算法——顺序表

一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象,这种结构整体性强,易于管理。

由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了

  • 分离式结构

Python数据结构与算法——顺序表

分离式结构,表对象里只保存与整个表有关的信息(容量个元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

元素存储区替换

一体式结构由于顺序表信息区与数据区连续存储在一起,所以想要更换数据区,就只能整体搬迁,即整个顺序表对象(存储顺序表的结构信息的区域)改变了。

分离式结构想要更换数据区,只需要将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。

元素存储区扩充

采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行了扩充,所有使用这个表的地方都不必修改。只要程序的运行环境还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。此种顺序表被称为动态顺序表,因为其容量可以在使用中动态变化。

  • 扩充的两种策略

每次扩充增加固定数目的存储位置,如每次扩充增加8个元素位置,这种策略称为线性增长

  • 每次扩充容量加倍,如每次扩充增加一倍存储空间。

特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。

补充:

内存:

Python数据结构与算法——顺序表

思维导图

Python数据结构与算法——顺序表

顺序表的操作

增加元素

Python数据结构与算法——顺序表

  1. 尾端加入元素,如图所示,直接在顺序表的元素末尾加上元素,其时间复杂度为O(1)
  2. 保序的加入元素,如图所示,将增加的元素50,放在索引为1的位置,则对应的其他元素则分别向后移动,此为保序,没有破坏增加元素之前的元素顺序,但因会让增加元素所在位置之后的元素都产生移动,其时间复杂度为O(n)

  3. 非保序的加入元素,其时间复杂度为O(1),由于其会破坏顺序表原有的元素顺序,因此不常用

删除元素

Python数据结构与算法——顺序表 )

  1. 删除表尾的元素,其时间复杂度为O(1)
  2. 保序的元素删除,时间复杂度为O(n)

  3. 非保序的元素删除,时间复杂度为O(1)

Python 中的顺序表

Python 中的list和tuple两种类型采用了顺序表的实现技术

  • tuple 是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似

list 的基本实现技术

Python 标准类型list 就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:

  • 基于下标(位置) 的高效元素访问和更新,时间复杂度是O(1); 为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。
  • 允许任意加入元素,而且在不断加入元素的过程中,表对象的标识不变;为满足该特征,必须能更换元素存储区,并且为保证更换存储区时list对象的标识不变,只能采用分离式实现技术。

在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。因此,使用list.append()加入元素比在指定位置插入元素效率高。

重点总结:

在Python的官方实现中,list实现采用了下面的策略,在建立空表时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert和append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阈值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式是为了避免出现过多空闲的存储位置。

作者:techLee

个人博客地址:www.limiao.tech

简书:techLee

原创文章,转载请告知


以上所述就是小编给大家介绍的《Python数据结构与算法——顺序表》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux设备驱动程序

Linux设备驱动程序

科波特 / 魏永明、耿岳、钟书毅 / 中国电力出版社 / 2006-1-1 / 69.00元

本书是经典著作《Linux设备驱动程序》的第三版。如果您希望在Linux操作系统上支持计算机外部设备,或者在Linux上运行新的硬件,或者只是希望一般性地了解Linux内核的编程,就一定要阅读本书。本书描述了如何针对各种设备编写驱动程序,而在过去,这些内容仅仅以口头形式交流,或者零星出现在神秘的代码注释中。 本书的作者均是Linux社区的领导者。Jonathan Corbet虽不是专职的内核......一起来看看 《Linux设备驱动程序》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具