三大用于数据科学的顶级Python库

栏目: Python · 发布时间: 6年前

内容简介:Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言。Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选。由于其广泛的用途,Python拥有大量的库,使数据科学家可以更轻松地完成复杂的任务,而无需很多编写代码的麻烦。以下是数据科学的前3个Python库。

Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言。Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选。

三大用于数据科学的顶级 <a href='https://www.codercto.com/topics/20097.html'>Python</a> 库

由于其广泛的用途,Python拥有大量的库,使数据科学家可以更轻松地完成复杂的任务,而无需很多编写代码的麻烦。以下是数据科学的前3个Python库。

1. NumPy

NumPy(Numerical Python的缩写)是配备有用资源的顶级库之一,可帮助数据科学家将Python转变为强大的科学分析和建模工具。流行的开源库可以在BSD许可下使用。它是用于在科学计算中执行任务的基础Python库。NumPy是一个更大的基于Python的开源 工具 生态系统的一部分,称为SciPy。

他的库为Python提供了大量的数据结构,可以毫不费力地执行多维数组和矩阵计算。除了用于求解线性代数方程和其他数学计算外,NumPy还可用作不同类型通用数据的通用多维容器。

此外,它与其他编程语言(如C / C ++和Fortran)完美集成。NumPy库的多功能性使其能够轻松快速地与各种数据库和工具结合使用。

2. Pandas

Pandas是另一个很棒的库,可以增强你的数据科学Python技能。与NumPy一样,它属于SciPy开源软件系列,可在BSD免费软件许可下使用。

Pandas提供多功能和强大的工具,用于整理数据结构和执行大量数据分析。该库适用于不完整,非结构化和无序的实际数据,并附带用于整形,聚合,分析和可视化数据集的工具。

此库中有三种类型的数据结构:

  • Series:单维,均匀阵列
  • DataFrame:具有异构类型列的二维
  • Panel:三维,大小可变阵列

3. Matplotlib

Matplotlib也是SciPy核心软件包的一部分,并在BSD许可下提供。它是一个流行的Python科学库,用于生成简单而强大的可视化。你可以使用Python框架进行数据科学生成创意图形,图表,直方图以及其他形状和图形,而无需担心编写多行代码。

结语:

Python编程语言在数据处理和准备方面做得很好,但对于复杂的科学数据分析和建模却不那么重要。用于数据科学的顶级Python框架有助于填补这一空白,允许你执行复杂的数学计算并创建能够理解数据的复杂模型。


以上所述就是小编给大家介绍的《三大用于数据科学的顶级Python库》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

编程卓越之道

编程卓越之道

Hyde R / 韩东海 / 电子工业出版社 / 2006-4-1 / 49.80

各位程序员一定希望自己编写的代码是能让老板赞赏、满意的代码;是能让客户乐意掏钱购买的代码;是能让使用者顺利使用的代码;是能让同行欣赏赞誉的代码;是能让自己引以为豪的卓越代码。本书作者为希望能编写出卓越代码的人提供了自己积累的关于卓越编程的真知灼见。它弥补了计算机科学和工程课程中被忽略的一个部分——底层细节,而这正是构建卓越代码的基石。具体内容包括:计算机数据表示法,二进制数学运算与位运算,内存组织......一起来看看 《编程卓越之道》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

html转js在线工具
html转js在线工具

html转js在线工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具