数据结构和算法面试题系列-二叉堆

栏目: 编程工具 · 发布时间: 6年前

内容简介:本文要描述的堆是二叉堆。二叉堆是一种数组对象,可以被视为一棵完全二叉树,树中每个结点和数组中存放该结点值的那个元素对应。树的每一层都是填满的,最后一层除外。二叉堆可以用于实现堆排序,优先级队列等。本文代码地址在使用数组来实现二叉堆,二叉堆两个属性,其中二叉堆对应的树的根为

本文要描述的堆是二叉堆。二叉堆是一种数组对象,可以被视为一棵完全二叉树,树中每个结点和数组中存放该结点值的那个元素对应。树的每一层都是填满的,最后一层除外。二叉堆可以用于实现堆排序,优先级队列等。本文代码地址在 这里

1 二叉堆定义

使用数组来实现二叉堆,二叉堆两个属性,其中 LENGTH(A) 表示数组 A 的长度,而 HEAP_SIZE(A) 则表示存放在A中的堆的元素个数,其中 LENGTH(A) <= HEAP_SIZE(A) ,也就是说虽然 A[0,1,...N-1] 都可以包含有效值,但是 A[HEAP_SIZE(A)-1] 之后的元素不属于相应的堆。

二叉堆对应的树的根为 A[0] ,给定某个结点的下标 i ,可以很容易计算它的父亲结点和儿子结点。 注意在后面的示例图中我们标注元素是从1开始计数的,而实现代码中是从0开始计数。

#define PARENT(i) ( i > 0 ? (i-1)/2 : 0)
#define LEFT(i) (2 * i + 1)
#define RIGHT(i) (2 * i + 2)
复制代码

注:堆对应的树每一层都是满的,所以一个高度为 h 的堆中,元素数目最多为 1+2+2^2+...2^h = 2^(h+1) - 1 (满二叉树),元素数目最少为 1+2+...+2^(h-1) + 1 = 2^h 。 由于元素数目 2^h <= n <= 2^(h+1) -1 ,所以 h <= lgn < h+1 ,因此 h = lgn 。即一个包含n个元素的二叉堆高度为 lgn

2 保持堆的性质

本文主要建立一个最大堆,最小堆原理类似。为了保持堆的性质, maxHeapify(int A[], int i) 函数让堆数组 A 在最大堆中下降,使得以 i 为根的子树成为最大堆。

void maxHeapify(int A[], int i, int heapSize)
{
    int l = LEFT(i);
    int r = RIGHT(i);

    int largest = i;

    if (l <= heapSize-1 && A[l] > A[i]) {
        largest = l;
    }

    if (r <= heapSize-1 && A[r] > A[largest]) {
        largest = r;
    }

    if (largest != i) { // 最大值不是i,则需要交换i和largest的元素,并递归调用maxHeapify。
        swapInt(A, i, largest);
        maxHeapify(A, largest, heapSize);
    }
}
复制代码
  • 在算法每一步里,从元素 A[i]A[left] 以及 A[right] 中选出最大的,将其下标存在 largest 中。如果 A[i] 最大,则以 i 为根的子树已经是最大堆,程序结束。

  • 否则, i 的某个子结点有最大元素,将 A[i]A[largest] 交换,从而使i及其子女满足最大堆性质。此外,下标为 largest 的结点在交换后值变为 A[i] ,以该结点为根的子树又有可能违反最大堆的性质,所以要对该子树递归调用 maxHeapify() 函数。

maxHeapify() 函数作用在一棵以 i 为根结点的、大小为 n 的子树上时,运行时间为调整 A[i]A[left]A[right] 的时间 O(1) ,加上对以 i 为某个子结点为根的子树递归调用 maxHeapify 的时间。 i 结点为根的子树大小最多为 2n/3 (最底层刚好半满的时候),所以可以推得 T(N) <= T(2N/3) + O(1) ,所以 T(N)=O(lgN)

下图是一个运行 maxHeapify(heap, 2) 的例子。 A[] = {16, 4, 10, 14, 7, 9, 3, 2, 8, 1} ,堆大小为 10

数据结构和算法面试题系列-二叉堆

3 建立最大堆

我们可以知道,数组 A[0, 1, ..., N-1] 中, A[N/2, ..., N-1] 的元素都是树的叶结点。如上面图中的 6-10 的结点都是叶结点。每个叶子结点可以看作是只含一个元素的最大堆,因此我们只需要对其他的结点调用 maxHeapify() 函数即可。

void buildMaxHeap(int A[], int n)
{
    int i;
    for (i = n/2-1; i >= 0; i--) {
        maxHeapify(A, i, n);
    }
}
复制代码

之所以这个函数是正确的,我们需要来证明一下,可以使用循环不变式来证明。

循环不变式:在for循环开始前,结点 i+1、i+2...N-1 都是一个最大堆的根。

初始化:for循环开始迭代前, i = N/2-1 , 结点 N/2, N/2+1, ..., N-1 都是叶结点,也都是最大堆的根。

保持:因为结点 i 的子结点标号都比 i 大,根据循环不变式的定义,这些子结点都是最大堆的根,所以调用 maxHeapify() 后, i 成为了最大堆的根,而 i+1, i+2, ..., N-1 仍然保持最大堆的性质。

终止:过程终止时,i=0,因此结点 0, 1, 2, ..., N-1 都是最大堆的根,特别的,结点0就是一个最大堆的根。

数据结构和算法面试题系列-二叉堆

虽然每次调用 maxHeapify() 时间为 O(lgN) ,共有 O(N) 次调用,但是说运行时间是 O(NlgN) 是不确切的,准确的来说,运行时间为 O(N) ,这里就不证明了,具体证明过程参见《算法导论》。

4 堆排序

开始用 buildMaxHeap() 函数创建一个最大堆,因为数组最大元素在 A[0] ,通过直接将它与 A[N-1] 互换来达到最终正确位置。去掉 A[N-1] ,堆的大小 heapSize 减1,调用 maxHeapify(heap, 0, --heapSize) 保持最大堆的性质,直到堆的大小由N减到1。

void heapSort(int A[], int n)
{
    buildMaxHeap(A, n);
    int heapSize = n;
    int i;
    for (i = n-1; i >= 1; i--) {
        swapInt(A, 0, i);
        maxHeapify(A, 0, --heapSize);
    }
}
复制代码

5 优先级队列

最后实现一个最大优先级队列,主要有四种操作,分别如下所示:

insert(PQ, key)
maximum(PQ)
extractMax(PQ)
increaseKey(PQ, i, key)

这里定义一个结构体 PriorityQueue 便于操作。

typedef struct PriorityQueue {
    int capacity;
    int size;
    int elems[];
} PQ;
复制代码

最终优先级队列的操作实现代码如下:

/**
 * 从数组创建优先级队列
 */
PQ *newPQ(int A[], int n)
{
    PQ *pq = (PQ *)malloc(sizeof(PQ) + sizeof(int) * n);
    pq->size = 0;
    pq->capacity = n;

    int i;
    for (i = 0; i < pq->capacity; i++) {
        pq->elems[i] = A[i];
        pq->size++;
    }
    buildMaxHeap(pq->elems, pq->size);

    return pq;
}

int maximum(PQ *pq)
{
    return pq->elems[0];
}

int extractMax(PQ *pq)
{
    int max = pq->elems[0];
    pq->elems[0] = pq->elems[--pq->size];
    maxHeapify(pq->elems, 0, pq->size);
    return max;
}

PQ *insert(PQ *pq, int key)
{
    int newSize = ++pq->size;
    if (newSize > pq->capacity) {
        pq->capacity = newSize * 2;
        pq = (PQ *)realloc(pq, sizeof(PQ) + sizeof(int) * pq->capacity);
    }
    pq->elems[newSize-1] = INT_MIN;
    increaseKey(pq, newSize-1, key);
    return pq;
}

void increaseKey(PQ *pq, int i, int key)
{
    int *elems = pq->elems;
    elems[i] = key;

    while (i > 0 && elems[PARENT(i)] < elems[i]) {
        swapInt(elems, PARENT(i), i);
        i = PARENT(i);
    }
}
复制代码

以上所述就是小编给大家介绍的《数据结构和算法面试题系列-二叉堆》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

需求

需求

[美] 亚德里安•斯莱沃斯基(Adrian J. Slywotzky)、[美]卡尔•韦伯 (Karl Weber) / 魏薇、龙志勇 / 浙江人民出版社 / 2013-6 / 64.9

《财富汇•需求:缔造伟大商业传奇的根本力量》内容简介:需求,是缔造伟大商业传奇的根本力量。《财富汇•需求:缔造伟大商业传奇的根本力量》呈现了人们无法拒绝、竞争对手无法复制的需求创造的六大关键,在人们无奈接受的现状和心中真正期待的理想的这道鸿沟之上,架设起了一道桥梁。 创造需求,需要解开一个谜团,这个谜团是人类学、心理学、科技、设计、经济学、基础设施以及其他众多因素综合而成的奇特组合。《财富汇......一起来看看 《需求》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具