内容简介:本文由Google 2017年的论文我们根据论文的结构图,一步一步使用
本文由 罗周杨 原创,转载请注明作者和出处。未经授权,不得用于商业用途。
Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了 Transformer 模型,完全基于 Attention mechanism ,抛弃了传统的 RNN 和 CNN 。
我们根据论文的结构图,一步一步使用 PyTorch 实现这个 Transformer 模型。
Transformer架构
首先看一下transformer的结构图:
解释一下这个结构图。首先, Transformer 模型也是使用经典的 encoer-decoder 架构,由encoder和decoder两部分组成。
上图的左半边用 Nx
框出来的,就是我们的encoder的一层。encoder一共有6层这样的结构。
上图的右半边用 Nx
框出来的,就是我们的decoder的一层。decoder一共有6层这样的结构。
输入序列经过 word embedding 和 positional encoding 相加后,输入到encoder。
输出序列经过 word embedding 和 positional encoding 相加后,输入到decoder。
最后,decoder输出的结果,经过一个线性层,然后计算softmax。
word embedding和 positional encoding 我后面会解释。我们首先详细地分析一下encoder和decoder的每一层是怎么样的。
Encoder
encoder由6层相同的层组成,每一层分别由两部分组成:
- 第一部分是一个 multi-head self-attention mechanism
- 第二部分是一个 position-wise feed-forward network ,是一个全连接层
两个部分,都有一个 残差连接(residual connection) ,然后接着一个 Layer Normalization 。
如果你是一个新手,你可能会问:
- multi-head self-attention 是什么呢?
- 参差结构是什么呢?
- Layer Normalization又是什么?
这些问题我们在后面会一一解答。
Decoder
和encoder类似,decoder由6个相同的层组成,每一个层包括以下3个部分:
- 第一个部分是 multi-head self-attention mechanism
- 第二部分是 multi-head context-attention mechanism
- 第三部分是一个 position-wise feed-forward network
还是和encoder类似,上面三个部分的每一个部分,都有一个 残差连接 ,后接一个 Layer Normalization 。
但是,decoder出现了一个新的东西 multi-head context-attention mechanism 。这个东西其实也不复杂,理解了 multi-head self-attention 你就可以理解 multi-head context-attention 。这个我们后面会讲解。
Attention机制
在讲清楚各种attention之前,我们得先把attention机制说清楚。
通俗来说, attention 是指,对于某个时刻的输出 y
,它在输入 x
上各个部分的注意力。这个注意力实际上可以理解为 权重 。
attention机制也可以分成很多种。 Attention? Attention! 一问有一张比较全面的表格:
Figure 2. a summary table of several popular attention mechanisms.上面第一种 additive attention 你可能听过。以前我们的seq2seq模型里面,使用attention机制,这种**加性注意力(additive attention)**用的很多。Google的项目 tensorflow/nmt 里面使用的attention就是这种。
为什么这种attention叫做 additive attention 呢?很简单,对于输入序列隐状态 和输出序列的隐状态 ,它的处理方式很简单,直接 合并 ,变成
但是我们的transformer模型使用的不是这种attention机制,使用的是另一种,叫做 乘性注意力(multiplicative attention) 。
那么这种 乘性注意力机制 是怎么样的呢?从上表中的公式也可以看出来: 两个隐状态进行点积 !
Self-attention是什么?
到这里就可以解释什么是 self-attention 了。
上面我们说attention机制的时候,都会说到两个隐状态,分别是 和 ,前者是输入序列第i个位置产生的隐状态,后者是输出序列在第t个位置产生的隐状态。
所谓 self-attention 实际上就是, 输出序列 就是 输入序列 !因此,计算自己的attention得分,就叫做 self-attention !
Context-attention是什么?
知道了 self-attention ,那你肯定猜到了 context-attention 是什么了: 它是encoder和decoder之间的attention !所以,你也可以称之为 encoder-decoder attention !
context-attention一词并不是本人原创,有些文章或者代码会这样描述,我觉得挺形象的,所以在此沿用这个称呼。其他文章可能会有其他名称,但是不要紧,我们抓住了重点即可,那就是 两个不同序列之间的attention ,与 self-attention 相区别。
不管是 self-attention 还是 context-attention ,它们计算attention分数的时候,可以选择很多方式,比如上面表中提到的:
- additive attention
- local-base
- general
- dot-product
- scaled dot-product
那么我们的Transformer模型,采用的是哪种呢?答案是: scaled dot-product attention 。
Scaled dot-product attention是什么?
论文 Attention is all you need 里面对于attention机制的描述是这样的:
An attention function can be described as a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility of the query with the corresponding key.
这句话描述得很清楚了。翻译过来就是: 通过确定Q和K之间的相似程度来选择V !
用公式来描述更加清晰:
scaled dot-product attention和 dot-product attention 唯一的区别就是, scaled dot-product attention 有一个缩放因子 。
上面公式中的 表示的是K的维度,在论文里面,默认是 64
。
那么为什么需要加上这个缩放因子呢?论文里给出了解释:对于 很大的时候,点积得到的结果维度很大,使得结果处于softmax函数梯度很小的区域。
我们知道,梯度很小的情况,这对反向传播不利。为了克服这个负面影响,除以一个缩放因子,可以一定程度上减缓这种情况。
为什么是 呢?论文没有进一步说明。个人觉得你可以使用其他缩放因子,看看模型效果有没有提升。
论文也提供了一张很清晰的结构图,供大家参考:
Figure 3. Scaled dot-product attention architecture.首先说明一下我们的K、Q、V是什么:
- 在encoder的self-attention中,Q、K、V都来自同一个地方(相等),他们是上一层encoder的输出。对于第一层encoder,它们就是word embedding和positional encoding相加得到的输入。
- 在decoder的self-attention中,Q、K、V都来自于同一个地方(相等),它们是上一层decoder的输出。对于第一层decoder,它们就是word embedding和positional encoding相加得到的输入。但是对于decoder,我们不希望它能获得下一个time step(即将来的信息),因此我们需要进行 sequence masking 。
- 在encoder-decoder attention中,Q来自于decoder的上一层的输出,K和V来自于encoder的输出,K和V是一样的。
- Q、K、V三者的维度一样,即 。
上面scaled dot-product attention和decoder的self-attention都出现了 masking 这样一个东西。那么这个mask到底是什么呢?这两处的mask操作是一样的吗?这个问题在后面会有详细解释。
Scaled dot-product attention的实现
咱们先把scaled dot-product attention实现了吧。代码如下:
import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): """Scaled dot-product attention mechanism.""" def __init__(self, attention_dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(dim=2) def forward(self, q, k, v, scale=None, attn_mask=None): """前向传播. Args: q: Queries张量,形状为[B, L_q, D_q] k: Keys张量,形状为[B, L_k, D_k] v: Values张量,形状为[B, L_v, D_v],一般来说就是k scale: 缩放因子,一个浮点标量 attn_mask: Masking张量,形状为[B, L_q, L_k] Returns: 上下文张量和attetention张量 """ attention = torch.bmm(q, k.transpose(1, 2)) if scale: attention = attention * scale if attn_mask: # 给需要mask的地方设置一个负无穷 attention = attention.masked_fill_(attn_mask, -np.inf) # 计算softmax attention = self.softmax(attention) # 添加dropout attention = self.dropout(attention) # 和V做点积 context = torch.bmm(attention, v) return context, attention 复制代码
Multi-head attention又是什么呢?
理解了Scaled dot-product attention,Multi-head attention也很简单了。论文提到,他们发现将Q、K、V通过一个线性映射之后,分成 份,对每一份进行 scaled dot-product attention 效果更好。然后,把各个部分的结果合并起来,再次经过线性映射,得到最终的输出。这就是所谓的 multi-head attention 。上面的超参数 就是 heads 数量。论文默认是 8
。
下面是multi-head attention的结构图:
Figure 4: Multi-head attention architecture.值得注意的是,上面所说的 分成 份 是在 维度上面进行切分的。因此,进入到scaled dot-product attention的 实际上等于未进入之前的 。
Multi-head attention允许模型加入不同位置的表示子空间的信息。
Multi-head attention的公式如下:
其中,
论文里面, , 。所以在scaled dot-product attention里面的
Multi-head attention的实现
相信大家已经理清楚了multi-head attention,那么我们来实现它吧。代码如下:
import torch import torch.nn as nn class MultiHeadAttention(nn.Module): def __init__(self, model_dim=512, num_heads=8, dropout=0.0): super(MultiHeadAttention, self).__init__() self.dim_per_head = model_dim // num_heads self.num_heads = num_heads self.linear_k = nn.Linear(model_dim, self.dim_per_head * num_heads) self.linear_v = nn.Linear(model_dim, self.dim_per_head * num_heads) self.linear_q = nn.Linear(model_dim, self.dim_per_head * num_heads) self.dot_product_attention = ScaledDotProductAttention(dropout) self.linear_final = nn.Linear(model_dim, model_dim) self.dropout = nn.Dropout(dropout) # multi-head attention之后需要做layer norm self.layer_norm = nn.LayerNorm(model_dim) def forward(self, key, value, query, attn_mask=None): # 残差连接 residual = query dim_per_head = self.dim_per_head num_heads = self.num_heads batch_size = key.size(0) # linear projection key = self.linear_k(key) value = self.linear_v(value) query = self.linear_q(query) # split by heads key = key.view(batch_size * num_heads, -1, dim_per_head) value = value.view(batch_size * num_heads, -1, dim_per_head) query = query.view(batch_size * num_heads, -1, dim_per_head) if attn_mask: attn_mask = attn_mask.repeat(num_heads, 1, 1) # scaled dot product attention scale = (key.size(-1) // num_heads) ** -0.5 context, attention = self.dot_product_attention( query, key, value, scale, attn_mask) # concat heads context = context.view(batch_size, -1, dim_per_head * num_heads) # final linear projection output = self.linear_final(context) # dropout output = self.dropout(output) # add residual and norm layer output = self.layer_norm(residual + output) return output, attention 复制代码
上面的代码终于出现了 Residual connection 和 Layer normalization 。我们现在来解释它们。
Residual connection是什么?
残差连接其实很简单!给你看一张示意图你就明白了:
Figure 5. Residual connection. 假设网络中某个层对输入 x
作用后的输出是 ,那么增加 residual connection 之后,就变成了:
这个 +x
操作就是一个 shortcut 。
那么 残差结构 有什么好处呢?显而易见:因为增加了一项 ,那么该层网络对x求偏导的时候,多了一个常数项 !所以在反向传播过程中,梯度连乘,也不会造成 梯度消失 !
所以,代码实现residual connection很非常简单:
def residual(sublayer_fn,x): return sublayer_fn(x)+x 复制代码
文章开始的transformer架构图中的 Add & Norm
中的 Add
也就是指的这个 shortcut 。
至此, residual connection 的问题理清楚了。更多关于残差网络的介绍可以看文末的参考文献。
Layer normalization是什么?
GRADIENTS, BATCH NORMALIZATION AND LAYER NORMALIZATION 一文对normalization有很好的解释:
Normalization有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为0方差为1的数据。我们在把数据送入激活函数之前进行normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区。
说到normalization,那就肯定得提到 Batch Normalization 。BN在CNN等地方用得很多。
BN的主要思想就是:在每一层的每一批数据上进行归一化。
我们可能会对输入数据进行归一化,但是经过该网络层的作用后,我们的的数据已经不再是归一化的了。随着这种情况的发展,数据的偏差越来越大,我的反向传播需要考虑到这些大的偏差,这就迫使我们只能使用较小的学习率来防止梯度消失或者梯度爆炸。
BN的具体做法就是对每一小批数据,在批这个方向上做归一化。如下图所示:
Figure 6. Batch normalization example.(From theneuralperspective.com )可以看到,右半边求均值是 沿着数据批量N的方向进行的 !
Batch normalization的计算公式如下:
具体的实现可以查看上图的链接文章。
说完Batch normalization,就该说说咱们今天的主角 Layer normalization 。
那么什么是Layer normalization呢?:它也是归一化数据的一种方式,不过LN是 在每一个样本上计算均值和方差,而不是BN那种在批方向计算均值和方差 !
下面是LN的示意图:
Figure 7. Layer normalization example.和上面的BN示意图一比较就可以看出二者的区别啦!
下面看一下LN的公式,也BN十分相似:
Layer normalization的实现
上述两个参数 和 都是可学习参数。下面我们自己来实现Layer normalization(PyTorch已经实现啦!)。代码如下:
import torch import torch.nn as nn class LayerNorm(nn.Module): """实现LayerNorm。其实PyTorch已经实现啦,见nn.LayerNorm。""" def __init__(self, features, epsilon=1e-6): """Init. Args: features: 就是模型的维度。论文默认512 epsilon: 一个很小的数,防止数值计算的除0错误 """ super(LayerNorm, self).__init__() # alpha self.gamma = nn.Parameter(torch.ones(features)) # beta self.beta = nn.Parameter(torch.zeros(features)) self.epsilon = epsilon def forward(self, x): """前向传播. Args: x: 输入序列张量,形状为[B, L, D] """ # 根据公式进行归一化 # 在X的最后一个维度求均值,最后一个维度就是模型的维度 mean = x.mean(-1, keepdim=True) # 在X的最后一个维度求方差,最后一个维度就是模型的维度 std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.epsilon) + self.beta 复制代码
顺便提一句, Layer normalization 多用于RNN这种结构。
Mask是什么?
现在终于轮到讲解mask了!mask顾名思义就是 掩码 ,在我们这里的意思大概就是 对某些值进行掩盖,使其不产生效果 。
需要说明的是,我们的Transformer模型里面涉及两种mask。分别是 padding mask 和 sequence mask 。其中后者我们已经在decoder的self-attention里面见过啦!
其中, padding mask 在所有的scaled dot-product attention里面都需要用到,而 sequence mask 只有在decoder的self-attention里面用到。
所以,我们之前 ScaledDotProductAttention 的 forward
方法里面的参数 attn_mask
在不同的地方会有不同的含义。这一点我们会在后面说明。
Padding mask
什么是 padding mask 呢?回想一下,我们的每个批次输入序列长度是不一样的!也就是说,我们要对输入序列进行 对齐 !具体来说,就是给在较短的序列后面填充 0
。因为这些填充的位置,其实是没什么意义的,所以我们的attention机制 不应该把注意力放在这些位置上 ,所以我们需要进行一些处理。
具体的做法是, 把这些位置的值加上一个非常大的负数(可以是负无穷),这样的话,经过softmax,这些位置的概率就会接近0 !
而我们的padding mask实际上是一个张量,每个值都是一个 Boolen ,值为 False
的地方就是我们要进行处理的地方。
下面是实现:
def padding_mask(seq_k, seq_q): # seq_k和seq_q的形状都是[B,L] len_q = seq_q.size(1) # `PAD` is 0 pad_mask = seq_k.eq(0) pad_mask = pad_mask.unsqueeze(1).expand(-1, len_q, -1) # shape [B, L_q, L_k] return pad_mask 复制代码
Sequence mask
文章前面也提到,sequence mask是为了使得decoder不能看见未来的信息。也就是对于一个序列,在time_step为t的时刻,我们的解码输出应该只能依赖于t时刻之前的输出,而不能依赖t之后的输出。因此我们需要想一个办法,把t之后的信息给隐藏起来。
那么具体怎么做呢?也很简单: 产生一个上三角矩阵,上三角的值全为1,下三角的值权威0,对角线也是0 。把这个矩阵作用在每一个序列上,就可以达到我们的目的啦。
具体的代码实现如下:
def sequence_mask(seq): batch_size, seq_len = seq.size() mask = torch.triu(torch.ones((seq_len, seq_len), dtype=torch.uint8), diagonal=1) mask = mask.unsqueeze(0).expand(batch_size, -1, -1) # [B, L, L] return mask 复制代码
哈佛大学的文章 The Annotated Transformer 有一张效果图:
Figure 8. Sequence mask.值得注意的是,本来mask只需要二维的矩阵即可,但是考虑到我们的输入序列都是批量的,所以我们要把原本二维的矩阵扩张成3维的张量。上面的代码可以看出,我们已经进行了处理。
回到本小结开始的问题, attn_mask
参数有几种情况?分别是什么意思?
- 对于decoder的self-attention,里面使用到的scaled dot-product attention,同时需要
padding mask
和sequence mask
作为attn_mask
,具体实现就是两个mask相加作为attn_mask。 - 其他情况,
attn_mask
一律等于padding mask
。
至此,mask相关的问题解决了。
Positional encoding是什么?
好了,终于要解释 位置编码 了,那就是文字开始的结构图提到的 Positional encoding 。
就目前而言,我们的Transformer架构似乎少了点什么东西。没错,就是 它对序列的顺序没有约束 !我们知道序列的顺序是一个很重要的信息,如果缺失了这个信息,可能我们的结果就是:所有词语都对了,但是无法组成有意义的语句!
为了解决这个问题。论文提出了 Positional encoding 。这是啥?一句话概括就是: 对序列中的词语出现的位置进行编码 !如果对位置进行编码,那么我们的模型就可以捕捉顺序信息!
那么具体怎么做呢?论文的实现很有意思,使用正余弦函数。公式如下:
其中, pos
是指词语在序列中的位置。可以看出,在 偶数位置,使用正弦编码,在奇数位置,使用余弦编码 。
上面公式中的 是模型的维度,论文默认是 512
。
这个编码公式的意思就是: 给定词语的位置 ,我们可以把它编码成 维的向量 !也就是说,位置编码的每一个维度对应正弦曲线,波长构成了从 到 的等比序列。
上面的位置编码是 绝对位置编码 。但是词语的 相对位置 也非常重要。这就是论文为什么要使用三角函数的原因!
正弦函数能够表达相对位置信息。,主要数学依据是以下两个公式:
上面的公式说明,对于词汇之间的位置偏移 k
, 可以表示成 和 的组合形式,这就是表达相对位置的能力!
以上就是 E的所有秘密。说完了positional encoding,那么我们还有一个与之处于同一地位的 word embedding 。
Word embedding大家都很熟悉了,它是对序列中的词汇的编码,把每一个词汇编码成 维的向量!看到没有, Postional encoding是对词汇的位置编码,word embedding是对词汇本身编码 !
所以,我更喜欢positional encoding的另外一个名字 Positional embedding !
Positional encoding的实现
PE的实现也不难,按照论文的公式即可。代码如下:
import torch import torch.nn as nn class PositionalEncoding(nn.Module): def __init__(self, d_model, max_seq_len): """初始化。 Args: d_model: 一个标量。模型的维度,论文默认是512 max_seq_len: 一个标量。文本序列的最大长度 """ super(PositionalEncoding, self).__init__() # 根据论文给的公式,构造出PE矩阵 position_encoding = np.array([ [pos / np.pow(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)] for pos in range(max_seq_len)]) # 偶数列使用sin,奇数列使用cos position_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2]) position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2]) # 在PE矩阵的第一行,加上一行全是0的向量,代表这`PAD`的positional encoding # 在word embedding中也经常会加上`UNK`,代表位置单词的word embedding,两者十分类似 # 那么为什么需要这个额外的PAD的编码呢?很简单,因为文本序列的长度不一,我们需要对齐, # 短的序列我们使用0在结尾补全,我们也需要这些补全位置的编码,也就是`PAD`对应的位置编码 pad_row = torch.zeros([1, d_model]) position_encoding = torch.cat((pad_row, position_encoding)) # 嵌入操作,+1是因为增加了`PAD`这个补全位置的编码, # Word embedding中如果词典增加`UNK`,我们也需要+1。看吧,两者十分相似 self.position_encoding = nn.Embedding(max_seq_len + 1, d_model) self.position_encoding.weight = nn.Parameter(position_encoding, requires_grad=False) def forward(self, input_len): """神经网络的前向传播。 Args: input_len: 一个张量,形状为[BATCH_SIZE, 1]。每一个张量的值代表这一批文本序列中对应的长度。 Returns: 返回这一批序列的位置编码,进行了对齐。 """ # 找出这一批序列的最大长度 max_len = torch.max(input_len) tensor = torch.cuda.LongTensor if input_len.is_cuda else torch.LongTensor # 对每一个序列的位置进行对齐,在原序列位置的后面补上0 # 这里range从1开始也是因为要避开PAD(0)的位置 input_pos = tensor( [list(range(1, len + 1)) + [0] * (max_len - len) for len in input_len]) return self.position_encoding(input_pos) 复制代码
Word embedding的实现
Word embedding应该是老生常谈了,它实际上就是一个二维浮点矩阵,里面的权重是可训练参数,我们只需要把这个矩阵构建出来就完成了word embedding的工作。
所以,具体的实现很简单:
import torch.nn as nn embedding = nn.Embedding(vocab_size, embedding_size, padding_idx=0) # 获得输入的词嵌入编码 seq_embedding = seq_embedding(inputs)*np.sqrt(d_model) 复制代码
上面 vocab_size
就是词典的大小, embedding_size
就是词嵌入的维度大小,论文里面就是等于 。所以word embedding矩阵就是一个 vocab_size
* embedding_size
的二维张量。
如果你想获取更详细的关于word embedding的信息,可以看我的另外一个文章 word2vec的笔记和实现 。
Position-wise Feed-Forward network是什么?
这就是一个全连接网络,包含两个线性变换和一个非线性函数(实际上就是ReLU)。公式如下:
这个线性变换在不同的位置都表现地一样,并且在不同的层之间使用不同的参数。
论文提到,这个公式还可以用两个核大小为1的一维卷积来解释,卷积的输入输出都是 ,中间层的维度是 。
实现如下:
import torch import torch.nn as nn class PositionalWiseFeedForward(nn.Module): def __init__(self, model_dim=512, ffn_dim=2048, dropout=0.0): super(PositionalWiseFeedForward, self).__init__() self.w1 = nn.Conv1d(model_dim, ffn_dim, 1) self.w2 = nn.Conv1d(model_dim, ffn_dim, 1) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(model_dim) def forward(self, x): output = x.transpose(1, 2) output = self.w2(F.relu(self.w1(output))) output = self.dropout(output.transpose(1, 2)) # add residual and norm layer output = self.layer_norm(x + output) return output 复制代码
Transformer的实现
至此,所有的细节都已经解释完了。现在来完成我们Transformer模型的代码。
首先,我们需要实现6层的encoder和decoder。
encoder代码实现如下:
import torch import torch.nn as nn class EncoderLayer(nn.Module): """Encoder的一层。""" def __init__(self, model_dim=512, num_heads=8, ffn_dim=2018, dropout=0.0): super(EncoderLayer, self).__init__() self.attention = MultiHeadAttention(model_dim, num_heads, dropout) self.feed_forward = PositionalWiseFeedForward(model_dim, ffn_dim, dropout) def forward(self, inputs, attn_mask=None): # self attention context, attention = self.attention(inputs, inputs, inputs, padding_mask) # feed forward network output = self.feed_forward(context) return output, attention class Encoder(nn.Module): """多层EncoderLayer组成Encoder。""" def __init__(self, vocab_size, max_seq_len, num_layers=6, model_dim=512, num_heads=8, ffn_dim=2048, dropout=0.0): super(Encoder, self).__init__() self.encoder_layers = nn.ModuleList( [EncoderLayer(model_dim, num_heads, ffn_dim, dropout) for _ in range(num_layers)]) self.seq_embedding = nn.Embedding(vocab_size + 1, model_dim, padding_idx=0) self.pos_embedding = PositionalEncoding(model_dim, max_seq_len) def forward(self, inputs, inputs_len): output = self.seq_embedding(inputs) output += self.pos_embedding(inputs_len) self_attention_mask = padding_mask(inputs, inputs) attentions = [] for encoder in self.encoder_layers: output, attention = encoder(output, self_attention_mask) attentions.append(attention) return output, attentions 复制代码
通过文章前面的分析,代码不需要更多解释了。同样的,我们的decoder代码如下:
import torch import torch.nn as nn class DecoderLayer(nn.Module): def __init__(self, model_dim, num_heads=8, ffn_dim=2048, dropout=0.0): super(DecoderLayer, self).__init__() self.attention = MultiHeadAttention(model_dim, num_heads, dropout) self.feed_forward = PositionalWiseFeedForward(model_dim, ffn_dim, dropout) def forward(self, dec_inputs, enc_outputs, self_attn_mask=None, context_attn_mask=None): # self attention, all inputs are decoder inputs dec_output, self_attention = self.attention( dec_inputs, dec_inputs, dec_inputs, self_attn_mask) # context attention # query is decoder's outputs, key and value are encoder's inputs dec_output, context_attention = self.attention( enc_outputs, enc_outputs, dec_output, context_attn_mask) # decoder's output, or context dec_output = self.feed_forward(dec_output) return dec_output, self_attention, context_attention class Decoder(nn.Module): def __init__(self, vocab_size, max_seq_len, num_layers=6, model_dim=512, num_heads=8, ffn_dim=2048, dropout=0.0): super(Decoder, self).__init__() self.num_layers = num_layers self.decoder_layers = nn.ModuleList( [DecoderLayer(model_dim, num_heads, ffn_dim, dropout) for _ in range(num_layers)]) self.seq_embedding = nn.Embedding(vocab_size + 1, model_dim, padding_idx=0) self.pos_embedding = PositionalEncoding(model_dim, max_seq_len) def forward(self, inputs, inputs_len, enc_output, context_attn_mask=None): output = self.seq_embedding(inputs) output += self.pos_embedding(inputs_len) self_attention_padding_mask = padding_mask(inputs, inputs) seq_mask = sequence_mask(inputs) self_attn_mask = torch.gt((self_attention_padding_mask + seq_mask), 0) self_attentions = [] context_attentions = [] for decoder in self.decoder_layers: output, self_attn, context_attn = decoder( output, enc_output, self_attn_mask, context_attn_mask) self_attentions.append(self_attn) context_attentions.append(context_attn) return output, self_attentions, context_attentions 复制代码
最后,我们把encoder和decoder组成Transformer模型!
代码如下:
import torch import torch.nn as nn class Transformer(nn.Module): def __init__(self, src_vocab_size, src_max_len, tgt_vocab_size, tgt_max_len, num_layers=6, model_dim=512, num_heads=8, ffn_dim=2048, dropout=0.2): super(Transformer, self).__init__() self.encoder = Encoder(src_vocab_size, src_max_len, num_layers, model_dim, num_heads, ffn_dim, dropout) self.decoder = Decoder(tgt_vocab_size, tgt_max_len, num_layers, model_dim, num_heads, ffn_dim, dropout) self.linear = nn.Linear(model_dim, tgt_vocab_size, bias=False) self.softmax = nn.Softmax(dim=2) def forward(self, src_seq, src_len, tgt_seq, tgt_len): context_attn_mask = padding_mask(tgt_seq, src_seq) output, enc_self_attn = self.encoder(src_seq, src_len) output, dec_self_attn, ctx_attn = self.decoder( tgt_seq, tgt_len, output, context_attn_mask) output = self.linear(output) output = self.softmax(output) return output, enc_self_attn, dec_self_attn, ctx_attn 复制代码
至此,Transformer模型已经实现了!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- modelr——基础模型实现
- 前端快速创建数据模型方法实现
- ResNeXt 深入解读与模型实现
- Openstack中Neutron的实现模型
- 自己动手实现神经网络分词模型
- 应用XGboost实现多分类模型实践
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。