内容简介:这次又用Keras做了一个差不多的,毕竟,现在最流行的项目都是Python做的,我也跟一下潮流:)数据是从本地解析好的图像和标签载入的。
上次用Matlab写过一个识别Mnist的神经网络,地址在: https://www.cnblogs.com/tiandsp/p/9042908.html
这次又用Keras做了一个差不多的,毕竟,现在最流行的项目都是 Python 做的,我也跟一下潮流:)
数据是从本地解析好的图像和标签载入的。
神经网络有两个隐含层,都有512个节点。
import numpy as np from keras.preprocessing import image from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation # 从文件夹图像与标签文件载入数据 def create_x(filenum, file_dir): train_x = [] for i in range(filenum): img = image.load_img(file_dir + str(i) + ".bmp", target_size=(28, 28)) img = img.convert('L') x = image.img_to_array(img) train_x.append(x) train_x = np.array(train_x) train_x = train_x.astype('float32') train_x /= 255 return train_x def create_y(classes, filename): train_y = [] file = open(filename, "r") for line in file.readlines(): tmp = [] for j in range(classes): if j == int(line): tmp.append(1) else: tmp.append(0) train_y.append(tmp) file.close() train_y = np.array(train_y).astype('float32') return train_y classes = 10 X_train = create_x(55000, './train/') X_test = create_x(10000, './test/') X_train = X_train.reshape(X_train.shape[0], 784) X_test = X_test.reshape(X_test.shape[0], 784) Y_train = create_y(classes, 'train.txt') Y_test = create_y(classes, 'test.txt') # 从网络下载的数据集直接解析数据 ''' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train, Y_train = mnist.train.images, mnist.train.labels X_test, Y_test = mnist.test.images, mnist.test.labels X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train = X_train.reshape(55000, 784) X_test = X_test.reshape(10000, 784) ''' model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(10)) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model.fit(X_train, Y_train, batch_size=500, epochs=20, verbose=1, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, verbose=0) test_result = model.predict(X_test) result = np.argmax(test_result, axis = 1) print(result) print('Test score:', score[0]) print('Test accuracy:', score[1])
最终在测试集上识别率在98%左右。
相关测试数据可以在这里 下载 到。
以上所述就是小编给大家介绍的《【Python】keras神经网络识别mnist》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 基于神经网络的命名实体识别 NeuroNER
- 【Python】keras卷积神经网络识别mnist
- TensorFlow.js 卷积神经网络手写数字识别
- 手撸卷积神经网络之手写数字识别 (Java)
- 在TensorFlow里训练神经网络识别MNIST数据
- 神经网络图像分割:气胸 X 光片识别案例
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。