内容简介:开发者利用jdbc连接hiveserver2(或者利用jdbc连接 spark HiveThriftServer2,由于两者都是提供jdbc连接到hive,因此,后面都统一称为利用jdbc连接hiveserver2),执行简单查询、复杂分析、超复杂分析等不同的sql任务,session并发量还很高(五六百甚至上千的并发),本质上要求大数据平台同时具备oltp的高并发与olap的高分析能力。对于hiveserver2这一类基于hadoop平台的jdbc server而言,非常不适合这种高并发的应用。最近发现
一、问题描述
开发者利用jdbc连接hiveserver2(或者利用jdbc连接 spark HiveThriftServer2,由于两者都是提供jdbc连接到hive,因此,后面都统一称为利用jdbc连接hiveserver2),执行简单查询、复杂分析、超复杂分析等不同的 sql 任务,session并发量还很高(五六百甚至上千的并发),本质上要求大数据平台同时具备oltp的高并发与olap的高分析能力。对于hiveserver2这一类基于hadoop平台的jdbc server而言,非常不适合这种高并发的应用。
最近发现hiveserver2(本质上是提供jdbc连接的driver进程)经常发生严重卡死故障。而且卡死分成两种现象:
故障现象1:
通过jdbc无法正常连接到hiveserver2;
故障现象2:
能够很顺利通过jdbc连接到hiveserver2,但是无法执行任何sql任务。
每次jdbc连接hiveserver2出现卡死,就必须重启hiveserver2才能解决。无休无止的重启,在生产环境是非常致命的糟糕体验。
二、问题分析
找到hiveserver2卡死的真正原因,才能够彻底解决该问题。经过与公司内熟悉hiveserver2和spark HiveThriftServer2的同事沟通,之前在公司内部环境也经常遇到卡死的情况,定位原因主要是两类:
(1)主要是由于jdbc连接hiveserver2的并发量非常高,而且某些sql任务会严重消耗hiveserver2的内存,导致hiveserver2压力巨大,比如:reducetask获取mapOutputStatus的时候。这种情况是由于hiveserver2自身的复杂压力大,内存损耗严重,严重GC进而导致hiveserver2故障。这种故障对应于上面介绍的“故障现象1”,通过jdbc无法正常连接到hiveserver2。为了解决该故障,可以通过优化内存GC可以缓解hiveserver2的GC卡死问题。
(2)由于执行某个大型sql任务,把资源池资源消耗殆尽,且长时间不释放,导致所有通过hiveserver2提交的sql任务都无法执行。这种故障对应于上面介绍的“故障现象2”,能够很顺利通过jdbc连接到hiveserver2,但是无法执行任何sql任务。为了解决此类故障,只能让开发者减少复杂任务执行,或者将不同类型的任务,提交到不同的资源队列执行。
三、复现问题
3.1 复现jdbc无法连接到hiveserver2故障
根据同事的指导,我们也首先从内存GC角度入手。通过jstat 命令,每隔10秒获取一次hiveserver2进程的GC情况,最终复现该问题。以下是hiveserver2发生卡死,jdbc无法连接到hiveserver2的时候,统计GC的结果:
可以看到,当hiveserver2发生严重卡死时,也就是hiveserver2 进程发生严重GC的时候。因此,可以通过优化hiveserver2的内存GC来优化hiveserver2,使之支持更高的并发、能够执行更复杂的sql任务。
3.2 复现通过hiveserver2提交sql任务无法执行故障
我们通过jdbc连接到hiveserver2,提交三个表之间的join复杂联合查询。三个表的数据量分别在 10亿、5亿和1亿,三个表做join查询。运行结果如下如所示:
可以看到,三个表之间做复杂的关联查询任务,sql执行最终会卡在reduce阶段,一直把资源占据。而后通过hiveserver2提交的其它任务sql任务,都会因为无法获取到资源被卡住无法执行。
这种情况,只能让开发者将大型任务提交到单独的资源队列,防止某个大型任务一直占据资源,使得其它任务无法执行。
四、问题解决
4.1 扩大hiveserver2启动的内存参数
既然出现了严重GC,首先需要做的就是将hiveserver2转移,重新部署到一台CPU和内存资源非常丰富的服务器。我们检测到原来部署hiveserver2的服务器上面还部署了HDFS nemanode、hbase master、zookeeper、yarn resourcemanager,资源严重不足。因此,将hiveserver2迁移到资源非常空闲的另外一台服务器。
4.2 采用优化GC机制和参数
之前hiveserver2进程的启动参数没有添加GC参数,也就是说采用系统默认的GC机制。这一次,我们结合公司内部的使用情况,采用cms GC机制。
同时为了更方便观察GC情况,我们在启动命令里面添加jconsle。具体的参数如下所示:
-Xms49152m -Xmx49152m -Djava.rmi.server.hostname=xxx.xxx.xxx.xxx -Dcom.sun.management.jmxremote.port=8999 -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -XX:+UseParNewGC -XX:ParallelGCThreads=30 -XX:MaxTenuringThreshold=10 -XX:TargetSurvivorRatio=70 -XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled -XX:ParallelCMSThreads=30 -XX:+UseCMSInitiatingOccupancyOnly -XX:+CMSClassUnloadingEnabled -XX:+DisableExplicitGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=1 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:GCLogFileSize=512M -Xloggc:/data/log/tbds/spark/gc-sparkthrift.log-${timenow}
其中,有几个参数需要根据服务器的自身资源量来决定。
(1)-Xms49152m -Xmx49152m 这两个参数需要考虑服务器实际的可用内存资源来设定;
(2)-XX:ParallelGCThreads=30 和 -XX:ParallelCMSThreads=30 这两个参数需要考虑服务器实际的CPU核数来决定。切记不要超过CPU核数。
经过上面两种优化方法之后,hiveserver2目前非常稳定。当然基于hadoop平台的hiveserver2本身支持的jdbc并发连接数有限,不可能做到关系型数据库那样的oltp高并发性能。当hiveserver2 的 jdbc session连接数达到极端情况(超过上千的并发),还是可能发生严重GC。此时,需要重启hiveserver2,并且控制并发量。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 性能优化第一课:性能指标
- 【前端性能优化】vue性能优化
- Golang 性能测试 (2) 性能分析
- 【前端性能优化】02--vue性能优化
- Java性能 -- 性能调优标准
- Java性能 -- 性能调优策略
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
互联网+ 战略版
刘润 / 中国华侨出版社 / 2015-5-1 / 49.8
1、“互联网+”上升为国家战略,“互联网+”成为下一个超级畅销书的热点话题在商业环境巨变的今天,传统企业该怎么走?传统企业转型是一个系统工程,如何定战略、抓主要矛盾? 2、首本“互联网+传统企业”的战略指导书。“我互联网+”时代到来了,传统企业的外部环境发生了哪些变化?了解商业新生代的新商业环境,跟之前工业时代的不同,从战略上指导传统企业转型,更安全也更大局把握游刃有余。一起来看看 《互联网+ 战略版》 这本书的介绍吧!