未来人工智能发展八大新趋势

栏目: 数据库 · 发布时间: 6年前

内容简介:人工智能(AI)是物联网及工业4.0发展的核心。尤其,当特斯拉(Tesla)推出电动车及苹果(Apple)发表新机iPhoneX推出FaceID之后,让市场体验到AI芯片的无限商机。同时,AI应用接受度越高的国家,将对其GDP产生贡献愈大。人工智能(AI)是物联网及工业4.0发展的核心。尤其,当特斯拉(Tesla)推出电动车及苹果(Apple)发表新机iPhoneX推出FaceID之后,让市场体验到AI芯片的无限商机。同时,AI应用接受度越高的国家,将对其GDP产生贡献愈大。AI芯片包含三大类市场,分别是

未来人工智能发展八大新趋势

人工智能(AI)是物联网及工业4.0发展的核心。尤其,当特斯拉(Tesla)推出电动车及苹果(Apple)发表新机iPhoneX推出FaceID之后,让市场体验到AI芯片的无限商机。同时,AI应用接受度越高的国家,将对其GDP产生贡献愈大。人工智能(AI)是物联网及工业4.0发展的核心。尤其,当特斯拉(Tesla)推出电动车及苹果(Apple)发表新机iPhoneX推出FaceID之后,让市场体验到AI芯片的无限商机。同时,AI应用接受度越高的国家,将对其GDP产生贡献愈大。

AI芯片包含三大类市场,分别是数据中心(云端)、通信终端产品(手机)、特定应用产品(自驾车、头戴式AR/VR、无人机、机器人...)。当前机器学习多采用GPU图像处理,尤以Nvidia是此一领域龙头,但是,有些业者认为GPU处理效率不够快,而且因应众多特定新产品的不同需求,于是,推出NPU、VPU、TPU、NVPU...等等。目前还不清楚哪种架构的芯片会在AI大战获胜。但(手机)终端市场对于AI芯片的功耗、尺寸、价格都有极为严格的要求,难度上比云端数据芯片更高。为抢未来AI应用市场商机,科技巨头如Google、微软、苹果企图建构AI平台生态模式吃下整个产业链。

未来人工智能发展八大新趋势 目前来看,未来AI发展有八大新趋势

趋势一:AI于各行业垂直领域应用具有巨大的潜力

人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力。而驱动市场的主要因素,是人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。

当然人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。其中,以自然语言处理(NLP)应用市场占AI市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、AI机器人及支持AI的智能手机等领域。

趋势二:AI导入医疗保健行业维持高速成长

由于医疗保健行业大量使用大数据及人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。此外AI还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。

趋势三:AI取代屏幕成为新UI/UX接口

过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。随着智能喇叭(SmartSpeaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。这表示着人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。

趋势四:未来手机芯片一定内建AI运算核心

现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建AI运算核心。正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年(2017)跟进导入3D感测相关应用。

趋势五:AI芯片关键在于成功整合软硬件

AI芯片的核心是半导体及算法。AI硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,而成功相结合的关键在于先进的封装技术。总体来说GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以AI硬件选择就看产品供货商的需求考虑而定。例如,苹果的FaceID脸部辨识就是3D深度感测芯片加上神经引擎运算功能,整合高达8个组件进行分析,分别是红外线镜头、泛光感应组件、距离传感器、环境光传感器、前端相机、点阵投影器、喇叭与麦克风。苹果强调用户的生物识别数据,包含:指纹或脸部辨识都以加密形式储存在iPhone内部,所以不易被窃取。

趋势六:AI自主学习是终极目标

AI“大脑”变聪明是分阶段进行,从机器学习进化到深度学习,再进化至自主学习。目前,仍处于机器学习及深度学习的阶段,若要达到自主学习需要解决四大关键问题。首先,是为自主机器打造一个AI平台;还要提供一个能够让自主机器进行自主学习的虚拟环境,必须符合物理法则,碰撞,压力,效果都要与现实世界一样;然后再将AI的“大脑”放到自主机器的框架中;最后建立虚拟世界入口(VR)。目前,NVIDIA推出自主机器处理器Xavier,就在为自主机器的商用和普及做准备工作。

趋势七:最完美的架构是把CPU和GPU(或其他处理器)结合起来

未来,还会推出许多专门的领域所需的超强性能的处理器,但是CPU是通用于各种设备,什么场景都可以适用。所以,最完美的架构是把CPU和GPU(或其他处理器)结合起来。例如,NVIDIA推出CUDA计算架构,将专用功能ASIC与通用编程模型相结合,使开发人员实现多种算法。

趋势八:AR成为AI的眼睛,两者是互补、不可或缺

未来的AI需要AR,未来的AR也需要AI,可以将AR比喻成AI的眼睛。为了机器人学习而创造的在虚拟世界,本身就是虚拟现实。还有,如果要让人进入到虚拟环境去对机器人进行训练,还需要更多其它的技术。

结语

至于CPU是否会被TPU、NPU、VPU….等之类新类型处理器取代,答案应该不会。因为,新出现的处理器只是为了处理新发现或尚未解决的问题,而且未来倾向将CPU整合。同时,芯片市场期望能有更多竞争及选择,不要英特尔、高通独大。

迎物联网时代来临,以往大家认为摩尔定律最后会走到极限,但未来硅时代是异质性及跨界的整合,还有很多需求未出现。NVIDIA执行官黄仁勋则表示,摩尔定律已经是旧时代的法则,GPU的计算速率和神经网络复杂性都在过去2到5年内呈现出爆发性成长。

展望未来,随着AI、物联网、VR/AR、5G等技术成熟,将带动新一波半导体产业的30年荣景,包括:内存、中央处理器、通讯与传感器四大芯片,各种新产品应用芯片需求不断增加,以中国在半导体的庞大市场优势绝对在全球可扮演关键的角色。

声明:本文来自安全内参,版权归作者所有。文章内容仅代表作者独立观点,不代表安全内参立场,转载目的在于传递更多信息。如需转载,请联系原作者获取授权。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

千夫所指

千夫所指

乔恩·罗森 / 王岑卉 / 九州出版社 / 2016-10-1 / CNY 42.80

编辑推荐: 《乌合之众》是为了跪舔权贵?《普通心理学》实验存在重大漏洞?《引爆点》的理论都是瞎掰的?社交网络时代《1984》预言的“老大哥”是否已经变成事实? 《纽约时报》年度十佳书 《GQ》杂志年度十佳书 《卫报》年度十佳书 《泰晤士报》年度十佳书 《经济学人》年度重推! 黑天鹅年度重点图书! 《乌合之众》是为了迎合权贵?《普通心理学》实验存在重大......一起来看看 《千夫所指》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试