内容简介:在Spark 的持久化使用中,我们会将一些经常使用到的数据进行持久化,比如使用cache()或者persist()方法进行持久化操作,但是当某个节点或者executor挂掉之后,持久化的数据会丢失,因为我们的数据是保存在内存当中的,这时就会重新计算RDD,如果某个之前的RDD需要大量的计算时间,这时将会浪费很多时间,因此,我们有时候需要使用checkpoint操作来将一些数据持久化可容错文件系统中,比如HDFS文件系统中,虽然这种方式可能对性能带来了一定的影响(磁盘IO),但是为了避免大量的重复计算操作,
在Spark 的持久化使用中,我们会将一些经常使用到的数据进行持久化,比如使用cache()或者persist()方法进行持久化操作,但是当某个节点或者executor挂掉之后,持久化的数据会丢失,因为我们的数据是保存在内存当中的,这时就会重新计算RDD,如果某个之前的RDD需要大量的计算时间,这时将会浪费很多时间,因此,我们有时候需要使用checkpoint操作来将一些数据持久化可容错文件系统中,比如HDFS文件系统中,虽然这种方式可能对性能带来了一定的影响(磁盘IO),但是为了避免大量的重复计算操作,有时也可以使用性能代价来换取时间效率上的提升。
当我们对某个RDD进行了缓存操作之后,首先会去CaacheManager中去找,然后紧接着去BlockManager中去获取内存或者磁盘中缓存的数据,如果没有进行缓存或者缓存丢失,那么就会去checkpoint的容错文件系统中查找数据,如果最终没有找到,那就会按照RDD lineage重新计算。
checkpoint原理
1.在代码中,当使用SparkContext可以设置一个checkpointFile文件目录,比如HDFS文件目录。
2.在代码中对需要checkpoint的RDD调用checkpoint方法。
3.RDDCheckpointData(spark内部的API),接管你的RDD,会标记为marked for checkpointing,准备进行checkpoint。
4.你的job运行完之后,会调用一个finalRDD.doCheckpoint()方法,会顺着rdd lineage,回溯扫描,发现有标记为待checkpoint的rdd,就会进行二次标记,标记为checkpointing in progress,正在接受checkpoint操作。
5.job执行完之后,就会启动一个内部的新job,去将标记为checkpointing in progress的rdd的数据,都写入hdfs文件中。(如果rdd之前cache过,会直接从缓存中获取数据,写入hdfs中;如果没有cache过,那么就会重新计算一遍这个rdd,再checkpoint)
6.将checkpoint过的rdd之前的依赖rdd,改成一个CheckpointRDD*,强制改变你的rdd的lineage。后面如果rdd的cache数据获取失败,直接会通过它的上游CheckpointRDD,去容错的文件系统,比如hdfs,中,获取checkpoint的数据。
RDDCheckpointData源码如下:
/**
* Enumeration to manage state transitions of an RDD through checkpointing
* [ Initialized --> marked for checkpointing --> checkpointing in progress --> checkpointed ]
*/
private[spark] object CheckpointState extends Enumeration {
type CheckpointState = Value
val Initialized, MarkedForCheckpoint, CheckpointingInProgress, Checkpointed = Value
}
/**
* This class contains all the information related to RDD checkpointing. Each instance of this
* class is associated with a RDD. It manages process of checkpointing of the associated RDD,
* as well as, manages the post-checkpoint state by providing the updated partitions,
* iterator and preferred locations of the checkpointed RDD.
*/
private[spark] class RDDCheckpointData[T: ClassTag](@transient rdd: RDD[T])
extends Logging with Serializable {
import CheckpointState._
// The checkpoint state of the associated RDD.
var cpState = Initialized
// The file to which the associated RDD has been checkpointed to
@transient var cpFile: Option[String] = None
// The CheckpointRDD created from the checkpoint file, that is, the new parent the associated RDD.
var cpRDD: Option[RDD[T]] = None
// Mark the RDD for checkpointing
def markForCheckpoint() {
RDDCheckpointData.synchronized {
if (cpState == Initialized) cpState = MarkedForCheckpoint
}
}
// Is the RDD already checkpointed
def isCheckpointed: Boolean = {
RDDCheckpointData.synchronized { cpState == Checkpointed }
}
// Get the file to which this RDD was checkpointed to as an Option
def getCheckpointFile: Option[String] = {
RDDCheckpointData.synchronized { cpFile }
}
// Do the checkpointing of the RDD. Called after the first job using that RDD is over.
def doCheckpoint() {
// If it is marked for checkpointing AND checkpointing is not already in progress,
// then set it to be in progress, else return
RDDCheckpointData.synchronized {
if (cpState == MarkedForCheckpoint) {
cpState = CheckpointingInProgress
} else {
return
}
}
// Create the output path for the checkpoint
val path = new Path(rdd.context.checkpointDir.get, "rdd-" + rdd.id)
//获取checkpoint文件路径
val fs = path.getFileSystem(rdd.context.HadoopConfiguration)
if (!fs.mkdirs(path)) {
throw new SparkException("Failed to create checkpoint path " + path)
}
// Save to file, and reload it as an RDD
val broadcastedConf = rdd.context.broadcast(
new SerializableWritable(rdd.context.hadoopConfiguration))
//checkpoint数据到文件系统中
rdd.context.runJob(rdd, CheckpointRDD.writeToFile[T](path.toString, broadcastedConf) _)
val newRDD = new CheckpointRDD[T](rdd.context, path.toString)
if (newRDD.partitions.size != rdd.partitions.size) {
throw new SparkException(
"Checkpoint RDD " + newRDD + "(" + newRDD.partitions.size + ") has different " +
"number of partitions than original RDD " + rdd + "(" + rdd.partitions.size + ")")
}
// Change the dependencies and partitions of the RDD
RDDCheckpointData.synchronized {
cpFile = Some(path.toString)
cpRDD = Some(newRDD)
rdd.markCheckpointed(newRDD) // Update the RDD's dependencies and partitions
cpState = Checkpointed
}
logInfo("Done checkpointing RDD " + rdd.id + " to " + path + ", new parent is RDD " + newRDD.id)
}
// Get preferred location of a split after checkpointing
def getPreferredLocations(split: Partition): Seq[String] = {
RDDCheckpointData.synchronized {
cpRDD.get.preferredLocations(split)
}
}
def getPartitions: Array[Partition] = {
RDDCheckpointData.synchronized {
cpRDD.get.partitions
}
}
def checkpointRDD: Option[RDD[T]] = {
RDDCheckpointData.synchronized {
cpRDD
}
}
}
在CheckPointRDD中写文件的操作如下:
def writeToFile[T: ClassTag](
path: String,
broadcastedConf: Broadcast[SerializableWritable[Configuration]],
blockSize: Int = -1
)(ctx: TaskContext, iterator: Iterator[T]) {
val env = SparkEnv.get
val outputDir = new Path(path)
val fs = outputDir.getFileSystem(broadcastedConf.value.value)
val finalOutputName = splitIdToFile(ctx.partitionId)
val finalOutputPath = new Path(outputDir, finalOutputName)
val tempOutputPath =
new Path(outputDir, "." + finalOutputName + "-attempt-" + ctx.attemptNumber)
if (fs.exists(tempOutputPath)) {
throw new IOException("Checkpoint failed: temporary path " +
tempOutputPath + " already exists")
}
val bufferSize = env.conf.getInt("spark.buffer.size", 65536)
val fileOutputStream = if (blockSize < 0) {
fs.create(tempOutputPath, false, bufferSize)
} else {
// This is mainly for testing purpose
fs.create(tempOutputPath, false, bufferSize, fs.getDefaultReplication, blockSize)
}
val serializer = env.serializer.newInstance()
val serializeStream = serializer.serializeStream(fileOutputStream)
serializeStream.writeAll(iterator)
serializeStream.close()
if (!fs.rename(tempOutputPath, finalOutputPath)) {
if (!fs.exists(finalOutputPath)) {
logInfo("Deleting tempOutputPath " + tempOutputPath)
fs.delete(tempOutputPath, false)
throw new IOException("Checkpoint failed: failed to save output of task: "
+ ctx.attemptNumber + " and final output path does not exist")
} else {
// Some other copy of this task must've finished before us and renamed it
logInfo("Final output path " + finalOutputPath + " already exists; not overwriting it")
fs.delete(tempOutputPath, false)
}
}
}
在RDD类的源码中,两个方法如下所示:
/**
* Performs the checkpointing of this RDD by saving this. It is called after a job using this RDD
* has completed (therefore the RDD has been materialized and potentially stored in memory).
* doCheckpoint() is called recursively on the parent RDDs.
*/
private[spark] def doCheckpoint() {
if (!doCheckpointCalled) {
doCheckpointCalled = true
if (checkpointData.isDefined) {
checkpointData.get.doCheckpoint()
} else {
dependencies.foreach(_.rdd.doCheckpoint())
}
}
}
/**
* Changes the dependencies of this RDD from its original parents to a new RDD (`newRDD`)
* created from the checkpoint file, and forget its old dependencies and partitions.
*/
private[spark] def markCheckpointed(checkpointRDD: RDD[_]) {
clearDependencies()
partitions_ = null
deps = null // Forget the constructor argument for dependencies too
}
在我们的应用程序中,在使用checkpoint的时候只需要进行两步简单的操作即可,使用SparkContext设置一个checkPoint文件目录,在需要checkpoint的RDD中调用doCheckpoint方法即可。
Linux公社的RSS地址: https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-09/154132.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Text Algorithms
Maxime Crochemore、Wojciech Rytter / Oxford University Press / 1994
This much-needed book on the design of algorithms and data structures for text processing emphasizes both theoretical foundations and practical applications. It is intended to serve both as a textbook......一起来看看 《Text Algorithms》 这本书的介绍吧!