系列文章
前言
前几篇文章分别从使用和源码层面对Quartz做了简单的分析,在分析的过程中也发现了Quartz不足的地方;比如底层调度依赖数据库的悲观锁,谁先抢到谁调度,这样会导致节点负载不均衡;还有调度和执行耦合在一起,导致调度器会受到业务的影响;下面看看如何来解决这几个问题;
思路
调度器和执行器拆成不同的进程,调度器还是依赖Quartz本身的调度方式,但是调度的并不是具体业务的QuartzJobBean,而是统一的一个RemoteQuartzJobBean,在此Bean中通过Netty远程调用执行器去执行具体业务Bean;具体的执行器在启动时注册到Zookeeper中,调度器可以在Zookeeper获取执行器信息,并通过相关的负载算法指定具体的执行器去执行,以下看简单的实现;
执行器
1.执行器配置文件
executor_name=firstExecutor service_address=127.0.0.1:8000 registry_address=127.0.0.1:2181
配置了执行器的名称,执行器启动的ip和端口以及Zookeeper的地址信息;
2.执行器服务
<bean id="executorServer" class="com.zh.job.executor.ExecutorServer"> <constructor-arg name="executorName" value="${executor_name}"/> <constructor-arg name="serviceAddress" value="${service_address}" /> <constructor-arg name="serviceRegistry" ref="serviceRegistry" /> </bean>
ExecutorServer通过Netty启动服务,并向Zookeeper注册服务,部分代码如下:
EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { // 创建并初始化 Netty 服务端 Bootstrap 对象 ServerBootstrap bootstrap = new ServerBootstrap(); bootstrap.group(bossGroup, workerGroup); bootstrap.channel(NioServerSocketChannel.class); bootstrap.childHandler(new ChannelInitializer<SocketChannel>() { @Override public void initChannel(SocketChannel channel) throws Exception { ChannelPipeline pipeline = channel.pipeline(); pipeline.addLast(new RpcDecoder(Request.class)); pipeline.addLast(new RpcEncoder(Response.class)); pipeline.addLast(new ExecutorServerHandler(handlerMap)); } }); bootstrap.option(ChannelOption.SO_BACKLOG, 1024); bootstrap.childOption(ChannelOption.SO_KEEPALIVE, true); // 获取 RPC 服务器的 IP 地址与端口号 String[] addressArray = StringUtils.splitByWholeSeparator(serviceAddress, ":"); String ip = addressArray[0]; int port = Integer.parseInt(addressArray[1]); // 启动 RPC 服务器 ChannelFuture future = bootstrap.bind(ip, port).sync(); // 注册 RPC 服务地址 if (serviceRegistry != null) { serviceRegistry.register(executorName, serviceAddress); LOGGER.info("register service: {} => {}", executorName, serviceAddress); } LOGGER.info("server started on port {}", port); // 关闭 RPC 服务器 future.channel().closeFuture().sync(); } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); }
在Netty中指定了编码器解码器,同时指定了ExecutorServerHandler用来处理调度器发送来的消息(更多代码查看项目源码);最后向Zookeeper注册服务,路径格式如下:
/job_registry/firstExecutor/address-0000000008
job_registry是固定值,firstExecutor是配置的具体执行器名称;
3.配置加载任务
添加注解类,用来指定具体的业务Job:
@Target({ ElementType.TYPE }) @Retention(RetentionPolicy.RUNTIME) @Component public @interface ExecutorTask { String name(); }
例如具体的业务Task如下所示:
@ExecutorTask(name = "firstTask") public class FirstTask implements IJobHandler { private static final Logger LOGGER = LoggerFactory.getLogger(FirstTask.class); @Override public Result execute(String param) throws Exception { LOGGER.info("execute firstTask"); return SUCCESS; } }
在启动执行器服务时,加载有ExecutorTask注解的任务类,此处定义的name要和调度端的名称相互匹配;
4.执行具体业务
Netty中指定了ExecutorServerHandler用来处理接受的调度器信息,通过反射的方式来调用具体的业务Job,部分代码如下:
private Object handle(Request request) throws Exception { // 获取服务对象 String serviceName = request.getInterfaceName(); Object serviceBean = handlerMap.get(serviceName); if (serviceBean == null) { throw new RuntimeException(String.format("can not find service bean by key: %s", serviceName)); } // 获取反射调用所需的参数 Class<?> serviceClass = serviceBean.getClass(); String methodName = request.getMethodName(); Class<?>[] parameterTypes = request.getParameterTypes(); Object[] parameters = request.getParameters(); // 使用 CGLib 执行反射调用 FastClass serviceFastClass = FastClass.create(serviceClass); FastMethod serviceFastMethod = serviceFastClass.getMethod(methodName, parameterTypes); return serviceFastMethod.invoke(serviceBean, parameters); }
serviceName对应的就是定义的”firstTask”,然后通过serviceName找到对应的Bean,然后反射调用,最终返回结果;
调度器
调度器还是依赖Quartz的原生调度方式,只不过调度器不在执行相关业务Task,所以相关配置也是类似,同样依赖数据库;
1.定义调度任务
<bean id="firstTask" class="org.springframework.scheduling.quartz.JobDetailFactoryBean"> <property name="jobClass" value="com.zh.job.scheduler.RemoteQuartzJobBean" /> <property name="jobDataMap"> <map> <entry key="executorBean" value-ref="firstExecutor" /> </map> </property> </bean> <bean id="firstExecutor" class="com.zh.job.scheduler.ExecutorBean"> <constructor-arg name="executorName" value="firstExecutor"></constructor-arg> <constructor-arg name="discoveryAddress" value="${discovery_address}"></constructor-arg> </bean>
同样在调度端定义了名称问firstTask的任务,可以发现此类是RemoteQuartzJobBean,并不是具体的业务Task;同时也指定了jobDataMap,用来指定执行器名称和发现的Zookeeper地址;
2.RemoteQuartzJobBean
public class RemoteQuartzJobBean extends QuartzJobBean { private static final Logger LOGGER = LoggerFactory.getLogger(RemoteQuartzJobBean.class); private ExecutorBean executorBean; @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { JobKey jobKey = context.getTrigger().getJobKey(); LOGGER.info("jobName:" + jobKey.getName() + ",group:" + jobKey.getGroup()); IJobHandler executor = JobProxy.create(IJobHandler.class, jobKey, this.executorBean); Result result; try { result = executor.execute(""); LOGGER.info("result:" + result); } catch (Exception e) { LOGGER.error("", e); } } public ExecutorBean getExecutorBean() { return executorBean; } public void setExecutorBean(ExecutorBean executorBean) { this.executorBean = executorBean; } }
此类同样继承于QuartzJobBean,这样Quartz才能调度Bean,在此Bean中通过jobKey和executorBean创建了IJobHandler的代理类,具体代码如下:
public static <T> T create(final Class<?> interfaceClass, final JobKey jobKey, final ExecutorBean executor) { // 创建动态代理对象 return (T) Proxy.newProxyInstance(interfaceClass.getClassLoader(), new Class<?>[] { interfaceClass }, new InvocationHandler() { @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { // 创建 RPC 请求对象并设置请求属性 Request request = new Request(); request.setRequestId(UUID.randomUUID().toString()); request.setInterfaceName(jobKey.getName()); request.setMethodName(method.getName()); request.setParameterTypes(method.getParameterTypes()); request.setParameters(args); String serviceAddress = null; ServiceDiscovery serviceDiscovery = ServiceDiscoveryFactory .getServiceDiscovery(executor.getDiscoveryAddress()); // 获取 RPC 服务地址 if (serviceDiscovery != null) { serviceAddress = serviceDiscovery.discover(executor.getExecutorName()); LOGGER.debug("discover service: {} => {}", executor.getExecutorName(), serviceAddress); } if (StringUtil.isEmpty(serviceAddress)) { throw new RuntimeException("server address is empty"); } // 从 RPC 服务地址中解析主机名与端口号 String[] array = StringUtil.split(serviceAddress, ":"); String host = array[0]; int port = Integer.parseInt(array[1]); // 创建 RPC 客户端对象并发送 RPC 请求 ExecutorClient client = new ExecutorClient(host, port); long time = System.currentTimeMillis(); Response response = client.send(request); LOGGER.debug("time: {}ms", System.currentTimeMillis() - time); if (response == null) { throw new RuntimeException("response is null"); } // 返回 RPC 响应结果 if (response.hasException()) { throw response.getException(); } else { return response.getResult(); } } }); }
在Request中指定了InterfaceName为jobKey.getName(),也就是这里的firstTask;通过Zookeeper发现服务时指定了executor.getExecutorName(),这样可以在Zookeeper中找到具体的执行器地址,当然这里的地址可能是一个列表,可以通过负载均衡算法(随机,轮询,一致性hash等等)进行分配,获取到地址后通过Netty远程连接执行器,发送执行job等待返回结果;
简单测试
分别执行调度器和执行器,相关日志如下:
1.执行器日志
2018-09-03 11:17:02 [main] 13::: DEBUG com.zh.job.sample.executor.ExecutorBootstrap - start server 2018-09-03 11:17:03 [main] 31::: DEBUG com.zh.job.registry.impl.ZookeeperServiceRegistry - connect zookeeper 2018-09-03 11:17:03 [main] 49::: DEBUG com.zh.job.registry.impl.ZookeeperServiceRegistry - create address node: /job_registry/firstExecutor/address-0000000009 2018-09-03 11:17:03 [main] 107::: INFO com.zh.job.executor.ExecutorServer - register service: firstExecutor => 127.0.0.1:8000 2018-09-03 11:17:03 [main] 109::: INFO com.zh.job.executor.ExecutorServer - server started on port 8000 2018-09-03 11:17:15 [nioEventLoopGroup-3-1] 17::: INFO com.zh.job.sample.executor.task.FirstTask - execute firstTask
2.调度器日志
2018-09-03 11:17:14 [myScheduler_Worker-1] 28::: INFO com.zh.job.scheduler.RemoteQuartzJobBean - jobName:firstTask,group:DEFAULT 2018-09-03 11:17:15 [myScheduler_Worker-2] 28::: INFO com.zh.job.scheduler.RemoteQuartzJobBean - jobName:firstTask,group:DEFAULT 2018-09-03 11:17:15 [myScheduler_Worker-1] 33::: DEBUG com.zh.job.registry.impl.ZookeeperServiceDiscovery - connect zookeeper 2018-09-03 11:17:15 [myScheduler_Worker-2] 54::: DEBUG com.zh.job.registry.impl.ZookeeperServiceDiscovery - get only address node: address-0000000009 2018-09-03 11:17:15 [myScheduler_Worker-1] 54::: DEBUG com.zh.job.registry.impl.ZookeeperServiceDiscovery - get only address node: address-0000000009 2018-09-03 11:17:15 [myScheduler_Worker-2] 42::: DEBUG com.zh.job.scheduler.JobProxy$1 - discover service: firstExecutor => 127.0.0.1:8000 2018-09-03 11:17:15 [myScheduler_Worker-1] 42::: DEBUG com.zh.job.scheduler.JobProxy$1 - discover service: firstExecutor => 127.0.0.1:8000 2018-09-03 11:17:15 [myScheduler_Worker-1] 55::: DEBUG com.zh.job.scheduler.JobProxy$1 - time: 369ms 2018-09-03 11:17:15 [myScheduler_Worker-1] 33::: INFO com.zh.job.scheduler.RemoteQuartzJobBean - result:com.zh.job.common.bean.Result@33b61489
总结
本文通过一个实例来分析如何解决原生Quartz调度存在不足的问题,主要体现在调度器与执行器的隔离上,各司其责发挥各自的优势;
示例代码地址
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Golang 抢占调度流程分析
- 比特币源码分析:任务调度器的使用
- 大数据平台任务调度与监控系统架构分析
- Kube-scheduler 源码分析(一):调度器设计
- 《k8s-1.13版本源码分析》-调度预选
- 《k8s-1.13版本源码分析》- 调度器设计
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Flexible Rails
Peter Armstrong / Manning Publications / 2008-01-23 / USD 44.99
Rails is a fantastic tool for web application development, but its Ajax-driven interfaces stop short of the richness you gain with a tool like Adobe Flex. Simply put, Flex is the most productive way t......一起来看看 《Flexible Rails》 这本书的介绍吧!